
Interpretable Federated Transformer Log Learning
for Threat Forensics

Abstract—Threat detection and forensics have become an
imperative component in every

:::::::
objective

:::
for

:::
any

:
digital forensic

triage. Supervised approaches have been proposed for inferring
system and network anomalies; including anomaly detection
contributions using syslogs. Nevertheless, most works downplay
the importance of the interpretability of a model’s decision-
making process. In this research, we are among the first to
propose an interpretable federated transformer log learning
model for threat detection supporting explainable cyber forensics.
The proposed model is generated by training a local transformer-
based threat detection model at each client in an organizational
unit. Local models at each client learn the system’s normal
behavior from the syslogs which keep records of execution
flows. Subsequently, a federated learning server aggregates the
learned model parameters from local models to generate a global
federated learning model. Log time-series capturing normal
behavior are expected to differ from those possessing cyber threat
activity. We demonstrate this difference through a goodness of
fit test based on Karl-Pearson’s Chi-square statistic. To provide
insights on actions triggering this difference, we integrate an
attention-based interpretability module.

We implement and evaluate our proposed model using HDFS,
a publicly available log dataset, and an in-house collected and
publicly released

:::::::::::::
publicly-released

:
dataset named CTDD, which

consists of more than 8 million syslogs representing cloud
collaboration services and systems compromised by different
classes of cyber threats. Moreover, through different experiments,
we demonstrate the log agnostic capability and applicability of
our approach on a real-world operational setting

::::::
settings

::::
such

::
as

:::
edge

:::::::::
computing

:::::::
systems. Our interpretability module manifests

significant attention difference between normal and abnormal
logs which provide insightful interpretability of the model’s
decision-making process. Finally, we deem the obtained results
as a validation for the appropriate adoption of our approach in
achieving threat forensics in the real world.

I. INTRODUCTION

The 2019 global coronavirus pandemic (COVID-19)
led companies to shift activities from their conventional
office model work-place to a work-from home model
en-masse

:::::::::
fast-paced

::::::
digital

::::::::::::
transformation

::::::::::
compelled

::::::
various

::::::
sectors,

:::::::::
including

::::::::
business

::::
and

::::::::::::
governments,

:::
to

::::::::
gradually

::::
shift

::::
their

::::::::
activities

:::::
from

:::::::::::
conventional

:::::::
manual

:::::::::
operations

::
to

:::::::
digitally

::::::::::
provisioned

::::::::
modalities

::
to
:::::
cope

::::
with

:::
the

:::
ever

::::::::
increased

::::::
volume

:::
of

::::::::
demands

::
in

:::::::
services. This shift was enabled by

the radical advancement of communication technology, online
software services, and increased bandwidth servicesto perform
work remotely. Despite the flexible benefits, this work

:::::
revised

modality introduces new cyber security threats to computing
systems and infrastructures used by corporations and individu-
als [49].

During the increase in COVID-19 cases
::::
Most

:::::::
recently, cyber

attacks targeting healthcare organizations increased by 45%

compared to an overall
::
and

:::
by

:
22% increase in cyber attacks

across all other industries around the world [1]. Cyber attacks
such as the one launched against Britain’s National Health
Service [12], Brno University Hospital

::::::
(Czech

::::::::
Republic)

:
[7],

and another related to a Ransomware attack on the University
of Düsseldorf (UKD) in Germanyshows that these cyber
attacks involve a range of

::::::::
(Germany)

:::::::::::
demonstrate

:::
the

:::::
range

::
of

::::::::
employed

:
attack vectors including Ransomware

::::::::::
ransomware,

Distributed Denial of Service (DDoS), Botnets
::::::
botnets, and

other malicious attacks
:::::::::::
misdemeanor. In response to these

attacks, a joint cyber security advisory was issued by the
Cyber security

:::::::
Security

:
and Infrastructure Security Agency

(CISA), the Federal Bureau of Investigation (FBI), and the
Department of Health and Human Services (HHS) advising on
an increased and imminent cybercrime threat to

::::::
towards

:
U.S.

hospitals and health care providers
:::::
critical

::::::::::::
infrastructure

:::
and

::::
other

:::::
assets

:
[2].

That said, one important aspect of threat forensics is to
acquire attack provenance. For instance, the presence of a
Ransomware

:
a
:::::::::::

ransomware
:
attack on a particular organiza-

tional machine exhibit system behavioral
:::::::
provokes

::::::
system

:::::::
behavior changes in which the attack openly notifies the user of
the infection [22]. By employing advanced deep learning-based
threat detection models on system logs (syslogs), cyber security
analysts can better differentiate normal system behaviors from
their counterparts to ultimately achieve

:::
and

::::::::
abnormal

::::::
system

::::::::
behaviors

::
to

:::::::
develop

:
anomaly detection [14, 33, 47]. Indeed,

syslog analysis is highly needed
:::::::
necessary

:
to understand the

inner working and behavior differences of an Operating System
(OS). Such logs offer valuable information about significant
occurrences that explain how the system operates in terms of
software, hardware, system processes, and system components
which all can be leveraged to detect any

:
a
:::::::
plethora

::
of

:
abnormal

activity occurring within a system.
Moreover

::::::::::
Nevertheless, syslogs contain sensitive information

that can provide insights on security weaknesses that are
hidden from outside scans and may disclose information about
vulnerable targets, login credentials, and security associations
between entities [41]. Therefore, exposing syslogs containing
sensitive information to a third party leads to the compromise
of

:::::::::::
compromises

:
data privacy. To address this liability, various

anonymization techniques , such as generalization and suppres-
sion , have been employed by the industry to safeguard the
user’s data privacy and the system as a whole

:::::
system

:::::::
security.

A drawback of applying such techniques is the decreased data
usefulness for analysis and understanding the system’s behavior.
Maintaining a balance between data usefulness and privacy

preservation , therefore, remains an important challenge when
dealing with syslogs.

In addition, most proposed works also fail to include
imperative elements for the development of effective threat
detection models. These include: (1) producing, collecting,
and open-sourcing novel representative datasets, (2) adopting

::::::
training

:
techniques to ensure user data privacy during the

training process to prevent the violation of data protection
[43] and data jurisdiction laws

:
in

::::::::::
accordance

::::
with

:::::::::
jurisdiction

:::::
[43] [28], and (3) provide visibility to the model’s decision

making process for identifying system activity triggering post-
incident detection.

To address this gap, we propose the first interpretable
federated transformer log learning model for threat forensics.
Unlike other works that exclusively focus on anomaly detection
in syslogs, our proposed model incorporates the concept of
Federated Learning (FL), a machine learning setting where
multiple entities collaborate in solving a machine learning
problem under the coordination of a federated server. We
leverage the distributed nature of this concept to generate a
robust model that offers a privacy preserving solution with a
high level of security [4].

The proposed model is segmented into two main stages.
In the first stage, a local transformer-based model

:
is

:
trained

at each client using the system’s local dataset composed of
syslogs

:::::
syslog files. Log event sequences are mapped to log

keys
:::
key

:
sequences using a parser. The mapped time-series

are then embedded and fed to a local model using stochastic
gradient descent (SGD) for learning the underlying patterns
of each given sequence. In the second stage, the learn

:::::
learned

parameters from all local models are passed to the FL server.
These are

:
,
::::
then

:
aggregated to generate a global federated

learning model. The global FL model is then shared with all
participating clients. Multiple rounds of this cycle are executed
for improving the performance of threat detection. In the last
cycle, the interpretability module at each client computes the
interpretability attention-based weights using the latest global
FL model. Clients then share the weights with the FL server
who aggregates them to generate the federated interpretable
attention-based

::::::::::::
interpretability

:
weights. All clients receive an

updated version of the global FL model for inference and the
federated interpretable attention-based

::::::::::::
interpretability weights

used for comparing it’s attention distribution against the one
from a specific log sample, Algorithm ??. III. .

:
In addition,

the intrepretability module provides forensic investigators the
means to backtrack the log keys triggering a cyber threat
detection. To the best of our knowledge, our work is the first to
offer such benefit in a federated setting to support

:::
this

::::::
benefit

::
for

:
cyber forensics and digital triage

:
in

::
a
::::::::
federated

::::::
setting.

In summary, this work makes the following contributions:
• We designed and implemented the first interpretable

federated transformer log learning model for cyber threat
detection in syslog with the capability of revealing
actionable information triggering the model’s outcome.

• We validated our model’s performance by training it using
two datasets while comparing it against State-Of-The-Art

(SOTA) works.
• We discovered a strong correlation between log messages

carrying indicators of the executed threat sample and
the attention given to the corresponding mapped input
sequence triggering the threat detection.

• We generated a cyber threat detection dataset consisting
of 8,448,715 syslogs collected during the second half of
2020 from a production-level environment comprised of
62 instances running uncompromised cloud collaboration
services and 16 cloud instances running threat samples.

The rest of this paper is organized as follows: In Section
II
::
II, we present the background and related work. Section

III
::
III covers our proposed model design. Section IV present

::
IV

::::::::
presents our experimental evaluation. Section V explore

:
V
::::::::

explores
:

the capabilities of the model’s interpretability
module. We present our discussion in Section VI

::
VI. Finally

in Section VII, concluding remarks are noted and
:::
VII,

:::
we

::::
offer

::::::::::
concluding

:::::::
remarks

::::
and

:::::::::::
opportunities

:::
for

:
a few future

endeavorsare pinpointed.

II. BACKGROUND AND RELATED WORK

In this section, we introduce existing approaches adopted in
syslog analysis and their corresponding limitations. In addition,
we discuss the concept of federated learning and attention-based
interpretability in the field of cyber security. Furthermore, we
present a brief overview of the datasets used for threat and
anomaly detection.

A. Existing Approaches for Syslog Analysis

During routine system operations, syslogs are generated
from various sources in a computer system and consist of
textual messages describing the activity throughout the global
system. Such messages provide an abundance of information
linked to the system’s behavior. That said, threat forensics
rely on periodic syslog scrutiny to unveil abnormal system
behavior originating from suspected attacks. Due to a

:::
the

:
large

number of generated logs, the examination of syslogs is not
a trivial task and can be hard

:
(if not impossible

:
)
:
to manually

track, analyze, detect, and diagnose system problems. In what
follows

::
the

:::::::::
following

::::::
section, we highlight previous , as well

as,
:::
and emerging log-based analysis approaches adopted in the

literature and discuss their limitations along with the newly
adopted approaches:

:
.

Rule-based approaches: Early research on log-based analy-
sis proposed rule-based detection techniques. Such approaches
rely on predefined rule-sets or dynamic rules which can be
created, superseded, or deleted by existing rules at run time
to accommodate for system behavior changes and thus limit
and avoid unnecessary alert reporting. More precisely, rule-
based approaches employ regular expressions to parse and
recognize events and trigger predefined actions based on
matched rules [17, 39, 40]. For instance, Swatch [17] is a
monitoring log file system that filters unwanted data and take

::::
takes

:
predefined actions based on detected log patterns. One of

its main capabilities is to
::::::
Swatch

::::
can ignore duplicate entries

in addition to performing
::
and

::::::::
perform rule changes based at

2

::
on

:
the time of arrival. Moreover, Logsurfer [39], a log file

analysis software, is designed to detect signatures of complex
interactions and is capable of updating its rule-set at run-time
and act accordingly.

However, two main foreseen fall-backs related to
:::::
pitfalls

::
of

rule-based approaches are characterized by the need for con-
tinuous rule-sets maintenance and their significant specificity
to application scenarios. Such ongoing maintenance requires
domain expertise to define rules that describe system behaviors.
Nonetheless, possible bottlenecks could occur during expert
involvement in defining the rules. Accordingly, the literature
has taken new directions and proposed further approaches to
perform log analysis, which we discuss in the sequel.

Causality-based approaches: Causality analysis on logs
gained much attention for comprehending system activities and
to detect

:::::::
detecting

:
potential risks. These approaches leverage

backward and forwards
:::::::
forward

:
causal graphs to identify

multi-hop attacks [26]. In addition, causality analysis utilizes
dependency graphs [25] and action history graphs [24]

:
,
:
which

provide a detailed dependency graph describing the system
execution sequences that occur during an intrusion. Moreover,
provenance-aware system approaches are introduced in [36] and
[38] to facilitate the integration of provenance across multiple
levels of abstraction. For example, such an approaches can
help determine malware provenance

:::::::
existence

:
and find the

source of anomalies. Moreover, whole system simulationsuch
as TaintBochs [11, 16],

::::
like

::::::::::
TaintBochs

::::::::
[11, 16]

:
,
:
is being

used to analyze sensitive data handling at a whole system level
and to help to

::::::
holistic

:::::
level

:::::
while

:::::::
helping recover legitimate

file system data after an attackoccurs.
Despite the so many credits of causality analysis in time

series problems, many concerns were related to the non-trivial
lifetime and iterative input and output processingof processes

:
, which can cause the well-known problem of dependency
explosion [29]. Many research

:::::::::
researchers

::
addressed the

problem of dependency explosion by adopting data reduction
techniques [16, 26, 29]. These approaches include Binary-based

::::::::::
binary-based

:
execution partitioning and TaintBochs simulation.

Nonetheless
:::::::
However, it is not certain that reducing the data

volume of irrelevant dependencies can lead to a decrease in
attack investigation time [32]. In addition, such data reduction

::::
[5] can unintentionally eliminate unnoticed important data

which highly affects the results
::::::::
important

::::
data

::::
and

:::::
hinder

:::
the

::::::
efficacy

:
of the analysis.

AI-based approaches: Current literature presents two main
approaches for log analysis ,

:::
that

:::::
make

::::
use

:::
of

:::
AI

::::::
models

namely, (1) log event indices-based
:::::::::
approaches

:
and (2) log

template semantics-based
:::::::::
approaches. In this paper, we follow

the log event indices-based approach. Both approaches first em-
ploy a log parser to identify log templates from a time-series of
log events. Subsequently, log templates are mapped into a

::::
Each

:::
log

::::::::
templates

::
is

:::::::
assigned

::
a
::::::
unique

::::::::
numerical

::::::::
identifier

::::::
(whole

:::::::
number)

:::::
called

::::
log

:::
key

::::::
which

:::::::::
substitutes

:::::
each

::::::::
matching

:::
log

::::
from

:::
the

::::::
original

:
time-seriesof vectors representing the original

sequence of log events. In contrast, log template semantics-
based approaches employ word embeddings to convert the

extracted
::::::::
identified log templates into vectors.The generated

vector time-series is
:::::::
sequence

:::
of

:::::::
vectors

:::::::::::
representing

:::
the

::::::
original

:::::::::::
time-seriesis

:
then used for training supervised and

unsupervised AI-based modelsthat .
::::::
These

::::::
models

:
learn the

underlying patterns within the vector time-series using different
methods. Such methods include Principal Component Analysis
(PCA) [51], Support Vector Machine (SVM) [18], Bi-LSTM
[54], LSTM [14, 35], and Transformers [20, 48]. Some of
these

:::::
These works incorporate methods to control

::::::::
previously

unseen log events
:::::
during

:::
the

:::::::
model’s

::::::
training

::::::
phase via human

intervention or by applying semantic vectorization techniques
such as Term Frequency-Inverse Document Frequency (TF-
IDF).

Nonetheless, SOTA methods fail to preserve user data privacy,
as they are based on centralized training approaches, and lack
methods for revealing the level of influence that each element
in the time-series had over the model’s prediction.

B. Federated Learning and Attention-based Interpretability

Federated learning [34] addresses the fundamental problems
of privacy, ownership, and data locality. Federated Stochastic
Gradient Descent (FedSGD) and Federated averaging (FedAVG)
[34] are two methods used for aggregating the parameters of
local models trained at each client. Previous works on federated
learning has been applied in the cyber security domain. These
include (1) a multi-task deep neural network in federated
learning (MT-DNN-FL) for network anomaly detection, traffic
recognition, and traffic classification [55], (2) an autonomous
self-learning distributed system for detecting anomalies in IoT
devices [37], and (3) DeepFeed [30],

:
which applies federated

deep learning to detect cyber threats against industrial cyber
physical systems. To the best of our knowledge, no works in
the cyber forensic space has

::::
have

:
integrated federated learning

and interpretability for threat inference using syslogs.
Model interpretability in cyber forensic applications has

been explored using LSTM-based models with attention [6]
by calculating the weighted sum over the attention value vectors.
Other LSTM works, where

:
in

::::::
which no attention mechanisms

are used, have employed anomaly score decomposition [45]
to provide visibility on the model’s decision making process.
Such works , nonetheless, do not integrate interpretability in a
federated learning setting.

C. Datasets for Threat and Anomaly Detection

Most cyber security datasets focus on network traffic [15,
23] while the few public datasets which consist of syslogs
[52] are mostly collected from distributed systems [50] or high
performance computing infrastructure with a relatively low
number of unique log messages and data structure, in contrast
to those seen in Operating System (OS)

:::
OS logs. On the other

hand, datasets for cyber threat analysis have been created using
synthetic data generators [31] or using real systems but

::
are

limited to authentication events in Windows-based systems
[21].

Different from these works, our Cyber Threat Detection
Dataset (CTDD) [3] is the first publicly available dataset con-

3

sisting of syslogs produced by real user activity and synthetic
threat scenarios in a modern cloud-based operational system.
The syslogs were captured from 62 virtual machines

:::::
Virtual

::::::::
Machines (VMs) running uncompromised cloud collaboration
services. Synthetic threat scenarios were emulated

:::::::
simulated

:
in

16 additional VMs. Our approach has the advantage that future
research groups can produce

:::::::
facilitate

::::
the

::::::::::::
incorporation

::
of

additional real or synthetic threat samples using the same cloud
image which is publicly available at

::
in Jetstream Cloud [42,

44].
:::
Our

:::::::::::
framework’s

:::::::::::
environment

::::::::::
deployment

::::
was

:::::::
secured

::
by

::::::::
enabling

:::::::
IP-based

::::::
access

:::
for

::::::
ingress

::::::
traffic,

::::::::
restricted

::::
port

::::::
access,

:::
and

::::
log

::::
data

::::::::::
sanitization

::::::::::
throughout

::::
our

:::::::
pipeline

::
to

:::::
ensure

::
a
:::::::::

negligible
::::::::::

uncertainty
:::

in
::::

the
::::::::
collected

::::
logs

:::::
from

:::::::::::::
uncompromised

:::::::
systems

::::::::
presented

:::
in

:::
the

:::::
CTDD

::::::
dataset.

:

III. PROPOSED MODEL DESIGN

In this section, we present the proposed interpretable
federated transformer log learning model supporting threat
forensics. The proposed model is designed considering

::::
under

the following assumptions: (1) Federated server
:::::::
federated

::::::
servers

:
and clients are trusted.

:
;
:
(2) The FL model is im-

plemented without additional privacy protection or security
mechanisms beyond preserving data locally at each client
and the inherited privacy benefits of FL. ;

:
(3) Only

:::
only

offline learning is considered for training the proposed model
with homogeneous Independent and Identically Distributed
(IID) data.

:
; (4) Distributed

:::::::::
distributed optimization follows a

synchronous approach where
::
in

:::::
which

:
all clients are available

at all times. ;
::::
and

:
(5) A

:
a typical horizontal FL architecture

[53] is followed were
::
in

:::::
which

:
local datasets present different

samples but share the same feature space. The training process
of our interpretable federated transformer log learning model
for threat forensics is presented in Algorithm ??

:
1.

The starting point of our proposed model’s training process,
presented in Fig. ??

:
1, takes place at client devices from each

organization unit producing log files (i.e., auth.log, syslog,
kernel, and audit.log). Log messages are processed using a
log parser that maps the time-series of log messages into
a sequence of log keys. These sequences are embedded into
vectors used for training a local model at each client that learns
the underlying patterns from the log key sequence. Each client
passes the local model’s learned parameters to the FL server.
The FL server aggregates the parameters from the participating
clients to generate the global FL model which is shared back
to the clients. Finally, an interpretability module is offered
to provide insights to the model’s decision making process
by aggregating the calculated attention given to each unique
element in the input sequence. Details of each component are
described in the following.

A. Distributed Federated Learning Architecture

In Algorithm ??
:
1, we integrate the FedAvg algorithm

presented by [34]. More specifically, we leverage this algorithm
on the federated learning server depicted in Fig. ??

:
1. In this pro-

cess, the FL server collaborates with Φ clients c1, . . . , cΦ−1, cΦ
for generating an updated global FL model. Each client trains

Algorithm 1:
::::::::::
Interpretable

::::::::
Federated

:::::::::::
Transformer

:::
Log

:::::::
Learning

::::::::::
Algorithm.

Input: Hyperparameters for local models defined by
the federated server, number of clients Φ, and
number of rounds R.

Output: Updated Federated Transformer Log Learning
Model Wt+1 and Interpretability weights ZSΦ
and ZSΥ

Φ .
Initialization:

1
::
FL

::::::
server

::::::
defines

:::
the

::::::::::::::
hyperparameters

:::
for

::::
the

:::::::
federated

::::::
model

::::::::
including

::::::::::::::
encoder/decoder

::::::
layers

:::
N ,

:::::::
attention

:::::
heads

:::
H ,

::::
and

::::::
clients

::
Φ.

Procedure:
2 while Round 6= 0 do

(I). For clients in business unit:
for all φ ∈Φ do

Local Transformer-based Model Training:
Log parser maps all log messages M to log
sequences Sj :
Sj ←M
Log key sequences Sj are embedded:
Xj ← Sj
Compute the average gradients with current
model wφt :
gφ = ∇fφ(wφt)
Update the model parameters:
∆wφt+1 ← wφt − ηgφ
Send the learned model parameters ∆wφt+1 to
the Federated Learning (FL) server.
Interpretability Module:
Compute interpretability weights by ZSφ and
ZSΥ
φ and share them with the FL server.

end
(II). For Federated Learning Server:
Global Model Update:
Wt+1 ←

∑Φ
φ=1(

nφ
n)∆wφt+1

Interpretability Module:
Generate the federated interpretability weights:
ZSφ =

∑H
h=1 Zh,κ

ZSΥ
φ =

∑H
h=1 Zh,κ,Υυ

Share ZSΥ
Φ with clients.

(III). For clients in business unit:
for all φ ∈Φ do

Update local model:
wφt = Wt+1 ← FederatedServer(φ,Wt+1)
Compute goodness of fit test for ZSΥ

φ :

Di =
∑υ
i=1

∑K
k=1

Z
SΥi
φ −ZSΥi

Φ

Z
SΥi
Φ

Update interpretability weights:
ZSΥ
φ ← ZSΥ

Φ

end
3 end

4

Federated Attention-Based
Interpretability

Zeek Logs Client 1 Attention-
Based Interpretability

Zeek Logs Client 3 Attention-
Based Interpretability

𝒁𝟑𝑺𝜰 𝒁𝟏𝑺𝜰

Interpretability weights
𝒁𝟑
𝑺𝜰

Federated Learning
Server

Transformer
Network

Transformer
Network

Transformer
Network

Local System
Logs

Local System
Logs

Local System
Logs

Interpretability weights
𝒁𝟏𝑺𝜰

𝑊%&'∆𝑤%&'(

𝑊%&'∆𝑤%&'(
𝑊%&' ∆𝑤%&'(

∇𝑓% 𝑤&
% =

1
𝑚
(
'()

*

𝐿(𝑥'
% , 𝑦'

% , 𝑤&
%)

Learned Parameters Aggregation

𝑊%&' ← #
)*'

(
𝑛)
𝑛 ∆𝑤%&'

)

Federated Interpretability weights
𝑍(+,

∆𝑤&+)
% = 𝑤&

% − 𝜂∇𝑓% 𝑤&
%

Local Transformer-Based Model Training per Client

Fig. 1. The architecture of the proposed Interpretable Federated Transformer Log Learning for Threat Detection. A set of clients Φ contributing to the global
FL model receive a set of hyperparameters and initial model parameters W0 for training local transformer-based models using their local data. Additionally,
the interpretability module uses the model’s calculated attention by key to compute ZSΥ

φ . ZSΥ
φ is computed for normal and cyber threat case scenarios. Each

client sends the learned model parameters ∆wφt+1 and their computed interpretable attention-based
:::::::::
interpretability

:
weights ZSΥ

φ to the FL server. The FL
server aggregates the learned parameters to generate an updated global FL model Wt+1. Afterwards, the interpretability module at the FL server aggregates
ZSΥ
φ to generate the federated interpretable attention-based

:::::::::
interpretability

:
weights ZSΥ

Φ . Finally the FL server shares Wt+1 and ZSΥ
Φ

a local model using their local data and share exclusively

:::::
shares

::::
only

:
the locally computed gradients or learned model

parameters ∆w1
t+1, . . . ,∆w

Φ−1
t+1 ,∆w

Φ
t+1 with the FL server.

Initial hyperparameters and model parameters W0 are passed
by the FL server to each client. FederatedSGD (FedSGD) is
an algorithm used for generating a global model in a federated
setting. In this process, the client computes the average gradient
gφ = ∇fφ(wφt) using its local data at the current model
wφt , Algorithm ??.I. Afterwards

::
as

:::::
seen

::
in
::::::::::

Algorithm
:::::

1−I.

::::
Then, clients pass gφ to the FL server who

:::
that

:
aggregates

them ∇F (Wt) =
∑Φ
φ=1(

nφ
n)gφ. The aggregated average

gradients are used for computing an updated global FL model
Wt+1 ← Wt − η∇F (Wt) where nφ denotes the number of
data points for client φ. FedAvg is an equivalent algorithm used
for updating the global FL model. In this approach, the learned
model parameters from each client are aggregated by the FL
server. Given that ∀φ,∆wφt+1 ← wφt −ηgφ, the updated global
FL model can be computed as Wt+1 ←

∑Φ
φ=1(

nφ
n)∆wφt+1

Algorithm ??.,
:::

as
::::
seen

:::
in

:::::::::
Algorithm

::::
1−II. Afterwards, the

updated global FL model is sent to all clients.

B. Log Parser

Our decentralized federated transformer log learning model
requires vector representation for the time-series of log
messages to learn the extensive and convoluted patterns and

correlations embedded within log sequences. Spell, a public
log parser [13, 19], is used for identifying log templates within
a log time-series. Given a subset of log files l where l ∈ L,
each log file (i.e., audit.log, auth.log, kernel.log, sys.log) is
composed of a finite unstructured sequence of log messages
l = {mi : mi ∈ M, i = 1, 2, . . .} where mi denotes the
message at index position i, and M denotes all the log messages
in l.

FL server defines the hyperparameters for the federated
model including encoder/decoder layers N , attention heads H ,
and clients Φ.

Interpretable Federated Transformer Log Learning
Algorithm.

Mapping log messages to log keys requires the log parser to
first identify the event template and variable elements from each
log message. The mathematical representation of the mapping
function is β : mi → (ei, vi)∀i, ei ∈ E, i = 1, 2, . . . where
E = e1, e2, . . . , en represents all the identified distinct event
templates in the log file l, ei represents the event template
identified in mi,:and vi is the corresponding list of variables.
Each distinct template in E is assigned a unique log key κi
using the mapping function ψ : ei → κi∀i, ei ∈ E, κi ∈
K, i = 1, . . . , n, where K represents the set of all unique key
values. The time-series of the mapped log keys S is presented
in the formula below:

5

S = {κ1, κ2, . . . , κn} ← ψ(ei)← ei ← β(mi)∀i,
mi ∈M, ei ∈ E, κi ∈ K

(1)

After all parsing operations are finished, S is segmented
into sub-sequences Sj based on defined window frames Λ as
presented in the following equations:

Sj = ((κ(j−1)Λ+p)p=1,...,Λ)j=1,...,n/Λ

= ((κ(j−1)Λ+p)
Λ
p=1)

n/Λ
j=1

= {S1, . . . , Sn/Λ}
(2)

C. Local Log Learning: Transformer-Based Model

Our proposed model integrates the work presented by
Vaswani et al. in [46]. Local models are composed by

:
of

a set of stacked encoder modules, a set of stacked decoder
modules, and the interconnections between them.

Encoder: The encoder is composed by
::
of

:
a multi-head

attention and a feed-forward sub-layer. A residual connection
is employed for each sub-layer followed by layer-normalization.
The elements in log key sequence are embedded to form a
vector list X = (x1, x2, . . . , xn) where the vector size is
defined as dm. A positional encoding vector is added to each
input embedding to provide context of their corresponding
position in the sequence. The resulting vector list is passed to
the self-attention layer.

Self-attention, used to define the relationships between every
key and the other elements in the sequence, is calculated using
3 vectors, namely, query(Q), key(K), and value(V) generated
by multiplying every vector xi with 3 matrices WQ,WK ,WV .
The resulting vectors Q,K, V have the corresponding dimen-
sions dq, dk, dv; all being smaller than dm. The output of the
self-attention layer Zs is calculated as follows:

Zs = Attention(Q,K, V) = softmax(Q·KT /
√
dk)V (3)

To improve the performance of the attention layer, we
implement the multi-headed attention mechanism which linearly
projects the Q, K, and V matrices H times, where H represents
the number of attention heads to be used. This approach allows
the model to jointly address information from each log key

:::
log

::::
keys

:
from different representation sub-spaces at different

positions in the sequence. The resulting process is a multi-
head Zcn = Concat(Z1, Z2, ..., ZH) matrix generated by the
concatenator of individual Zh matrices resulting from each
attention-head. The Zcn matrix is then multiplied with a weight
matrix WO, trained jointly with the model, resulting in a matrix
Z that captures the information from all attention heads. The
output matrix Z is finally passed to the feed-forward sub-layer
and then to the input of the next encoder in the stack.

Z = Multi− head(Q,K, V)

= Concat(Z1, Z2, ..., ZH)WO

where

Zh = Attention(QWQ
h ,KW

K
h , V W

V
h),

h = 1, . . . ,H

(4)

Decoder: Similar to the encoder module, the decoder module
is composed by

::
of a stack of decoders. The decoder shares

the same components of the encoder with the addition of a

::
an

:
encoder-decoder attention sub-layer positioned between the

self-attention and feed-forward sub-layers. Matrices K and V ,
resulting from the enconder

::::
result

:::::
from

:::
the

:::::::
encoder’s module

outputand the
:
.
::::
The Q matrix

:
is
:
shared by the previous decoder

in the stackare used for allowing
:
.
:::::
These

:::::
three

:::::::
matrices

:::::
allow

every position in the decoder to attend all positions in the log
key input sequence. In addition, the auto-regressive decoder
module adds the output of each step, the predicted log key,
with

:::
and

:
a positional encoding. In contrast with the encoder,

the self-attention layer of the decoder is only permitted to
attend earlier positions in the output sequence; this is achieved
by masking future positions before the softmax calculation
takes place.

After the multi-head attention, each encoder and decoder
has a pointwise feed-forward layer. This is applied separately
and identically to each element in the log key sequence. The
feed-forward layer consists of two linear transformation which
use ReLu activation function and is formally expressed as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (5)

The logits vector is ingested by
:
a
:

softmax layer that
transforms the logits vector into probabilities. The element
in the vector with the highest probability is selected and the
log key associated with it is set as

::::::::
associated

:::
log

::::
key

:::::::
becomes

the output of this specific time step.
The training data consists of sequences of mapped keys

from syslogs collected from uncompromissed
::::::::::::
uncompromised

systems. Sequences of log keys within a window frames Λ
are used for training the local model. The local model is
trained to predict a list of candidate log keys given previous
log keys. The transformer neural network architecture creates
a multi-classification model, each type of log key representing
a class. As stated before, this SOTA architecture uses attention
to gain context from previous inputs when predicting the next
log key. With structured data and

:
a built model, the log key

anomaly detection model is trained to predict the next log
keywhich represents ,

:::::::::::
representing

:
the next log entry. The

generated prediction is fed to the model to continue generating
predictions.

After training the model, new logs are processed to generate
a new prediction of log keys. First, a log key sequence, based
on a window frame Λ, is fed to the model. Based on this input,
the model predicts the top g candidates. If the ground truth
key Gj (which follows the input sub-sequence Sj) matches

6

one of the top g candidates, then Sj is classified as a normal
sequence. Otherwise, the input sub-sequence Sj is classified
as abnormal. A sequence S is classified as a cyber threat if
the number of sub-sequences classified as abnormal is greater
than or equal to a threshold τ defined by the user.

In order to backtrace the source of detected anomalies, the
interpretability module presents the sequence of log keys that
triggered the detection of an anomaly and the attention for
each key in the input sequence. If a log key is classified as
abnormal, the sequence of log keys that initiated the incident
can be tracked down. The sequence that triggered that anomaly
is considered as a risk pattern. Risk patterns are then extracted
from the sequence to generate new test cases.

D. Model Interpretability

The interpretability module at each client provides insight
to the level of influence each unique log key κ ∈ K has in a
particular sequence of log keys S. The federated transformer
log learning model Wt+1 is used by the interpretability module
to evaluate a given sequence S. While the federated transformer
log learning model is trained using log key sequences S from
uncompromised systems, the interpretability module at each
client and at the FL server can be used for log key sequences
collected from compromised or uncompromised systems.

Initially, each client uses their currently available data from
their uncompromised systems. As the federated model ingests
each sub-sequence Sj ∈ S, it calculates the attention for each
key ki ∈ Sj . After processing all sub-sequences Sj ∈ S, the
interpretability module aggregates the attention of each unique
log key κ ∈ K across all Sj . We refer to this influence as
the interpretability attention-based weights. This operation is
reflected in the following equation:

ZSφ =

H∑
h=1

Zh,κ,∀κ ∈ K,∀Sj ∈ S (6)

Additionally, the model computes the normalized version
of ZSφ for generating a bar chart. This provides the user with
visibility to the influence each unique key has for all input
sub-sequences.

Z ′φ =
(ZSφ − ZSφ min)

(ZSφ max − ZSφ min))
,∀φ ∈ Φ

Furthermore, the interpretability module provides additional
granularity by aggregating the attention of every unique key
κ ∈ K across all input sequences Sj for each ground truth
key Gj . Gj is also an element of Υ which denotes the list of
unique ground truth keys |Gj | from all clients. We denote υ
as the index for each unique key in Υ. The weight calculated
by aggregating the attention of every unique key κ for all
sequences Sj influencing each Υυ is denoted by the following
equation:

ZSΥ
φ =

H∑
h=1

Zh,κ,Υυ ,∀κ ∈ K, ∀Sj ∈ S,∀Υυ ∈ Υ (7)

Similarly to equation 7, the model computes the normalized
version of ZSΥ

φ and generates a saliency map for visualization
purposes.

Z ′′φ =
(ZSΥ

φ − ZSΥ
φ min)

(ZSΥ
φ max − ZSΥ

φ min))
,∀φ ∈ Φ

Each client sends the interpretability attention-based weights
ZSφ and ZSΥ

φ to the FL server. The FL server aggregates
the computed weights from each client φand computes the
corresponding normalized analog as presented in the following
equations:

Z ′Φ norm =
(Z ′Φ − Z ′Φ min)

(Z ′Φ max − Z ′Φ min))
: ZSΦ =

Φ∑
φ=1

ZSφ

Z ′′Φ norm =
(Z ′′Φ − Z ′′Φ min)

(Z ′′Φ max − Z ′′Φ min))
: ZSΥ

Φ =

Φ∑
φ=1

ZSΥ
φ

The
:
.
::::::::::
Afterwards,

:::
the

:
FL server shares the federated in-

terpretability attention-based weights ZSΦ and ZSΥ
Φ with each

client. The same process is followed for logs from compromised
systems; as .

:::
As

:
an example, multiple users can send to the FL

server the ZSφ and ZSΥ
φ computed from log sequences S from

compromised systems to generate a federated interpretability
attention-based

::::::::
federated

:::::::::::::
interpretability

:
weights for cyber

threats ZSΦ and ZSΥ
Φ .

After the client receives ZSΦ and ZSΥ
Φ for uncompro-

mised and/or compromised systems from the FL server, the
interpretability module conducts a multinomial distribution
goodness of fit test based on Chi-Square

::
on

:::::::::::
compromised

:::::
and/or

::::::::::::::
uncompromised

:::::::
systems

:::::
based

:::
on

:::::::::
chi-square for ZSΥ

φ

with respect to ZSΥ
Φ for uncompromised and/or compromised

systems to quantify their corresponding statistical distribution
difference. The interpretability module tests if the interpretabil-
ity attention-based weights for a sequence of interest ZSΥ

φ

has a specific distribution by computing the Karl Pearson’s
chi-square statistic as follows:

Di =

υ∑
i=1

K∑
k=1

(
ZSΥi
φ − ZSΥi

Φ

)2

ZSΥi
Φ

,∀υ ∈ Υ,∀κ ∈ K (8)

Using the multinomial, we can then test if the given sample
ZSΥ
φ has a similar distribution to ZSΥ

Φ by testing:

H0 : ZSΥ
φ = ZSΥ1

φ , . . . , ZSΥυ
φ = ZSΥ

Φ V S

H1 : ZSΥ
φ 6= ZSΥ

Φ

(9)

7

TABLE I
STATISTICS OF HDFS AND CTDD DATASETS

Datasets Duration # of logs # of Anomalies
HDFS 38.7 hours 11,175,629 16,838 (blocks)
CTDD 235 days 8,448,715 2,501 (logs)

Given an observation
(
ZSΥ
φ = ZSΥ1

φ . . . ZSΥυ
φ

)
, the valid

p-values are calculated:

p− value = P

(
χ2(υ − 1) >

υ∑
i=1

K∑
k=1

(
ZSΥi
φ − ZSΥi

Φ

)2

ZSΥi
Φ

)
(10)

The interpretability module uses the p-value to fail to
reject the hypothesis H0 or reject the hypothesis H1 that the
distribution of the interpretability attention-based weights for
the given sample ZSΥυ

φ shares the same distribution as ZSΥυ
Φ .

The test rejects the null hypothesis because the cyber threat
induces a perturbation in the space from the joint distribution
point of view, making the test statistics able to account for
the difference between both cases as Chacon et al. [10]

:::
[9]

exhibited in his research.

IV.
::::::::::::::
EXPERIMENTAL

::::::::::::
EVALUATION

A.
:::::::
Datasets

::::::::::
Considered

:::
Our

:::::::::::
experiments

:::::
were

:::::::::
conducted

:::::
using

::::
the

::::
two

:::::::
datasets

::::::::::
summarized

::
in

:::::
Table

::
I.
::::
The

:::::
HDFS

::::::
dataset

:::::
[50]

::
is

::::::::
composed

::
of

::::::::::
11,175,629

::::
logs

::::::::
collected

::::
from

::
a
::::::

cluster
:::

of
::::
200

:::::::
Amazon

:::::
virtual

::::::::
machines

:::::::
running

::::::::::::
Hadoop-based

::::
jobs

::::
that

:::
can

:::::
easily

::
be

:::::::
obtained

::::
from

:::::::
Zenodo

::::
[8].

::::
The

:::::::
original

::::
work

:::::::
labeled

::
all

::::
logs

::
in

:::
this

::::::
dataset

:::::
using

::::::::::
handcrafted

::::
rules

::
to

:::::::
classify

::::
them

:::::::
between

::::::
normal

:::
and

:::::::::
abnormal.

:::::::::
Abnormal

::::::::
samples

::
in

::::
this

::::::
dataset

:::
are

::::::::
identified

::
by

:::::::::
matching

:
a
:::

set
:::

of
:::::
block

:::
ids

::::::
listed

::
as

::::::::
abnormal

::
to

::::
their

::::::::::
appearance

::
in

:::
the

:::
log

:::::::::
messages.

::::
The

:::
list

::
of

::::::::
abnormal

:::
logs

:::::::
amount

::
to

::::::
16,838

::::::
blocks

::::
ids.

:

V. EXPERIMENTAL EVALUATION

A. Datasets Considered

Our experiments were conducted using the two datasets
presented in Table ??. The HDFS dataset [50] is composed
of 11,175,629 logs collected from a cluster of 200 Amazon
virtual machines running Hadoop-based jobs which can easily
be obtained from Zenodo [8]. The original work labeled all
logs in this dataset using handcrafted rules to classify them
between normal and abnormal. Abnormal samples in this
dataset are identified by matching a set of block ids listed
as abnormal to their appearance in the log messages. The list
of abnormal logs amount to 16,838 blocks ids.

Our CTDD dataset is composed of logs registering system
activity running uncompromised cloud collaboration services.
This environment consists of a cluster of virtual machines
deployed across multiple networks in the Jetstream educational

cloud that offer interactive computing in the cloud such as
Jupyter Lab. The normal operation syslog samples presented
in this dataset were collected from 62 VMs, each operated by
different users. No user was allowed to access a VM assigned
to another user. The threat samples from our dataset were
collected from 16 VMs running malicious software samples.

Syslogs from uncompromised VMs running cloud collab-
oration services were collected from 3 clusters, all of them
hosted

::::::
hosting Ubuntu 18.04 operating systems. Each VM was

assigned to a student to perform a variety of data analytics
and machine learning activities. ”Sudo”

:::::
“Sudo”

:
privileges

were restricted for ”Ubuntu”
:::::::
“Ubuntu”

:
user in the Practicum

2020 cluster while the IS 7033 and ITESM 2020 clusters
had unrestricted ”root”

:::::
“root”

:
privileges. Furthermore, VMs

in the IS 7033 clusters were safeguarded by a firewall that
allowed access to user specific

:::::::::
exclusively

::
to

::::
each

::::::
user’s

:
IP

addresses while the Practicum 2020 and ITESM 2020 clusters
were assigned to security groups that restricted ingress traffic
to most network ports. In addition, a total of 2,501 syslogs
were collected from 16 compromised VMs running malicious
threat samples presented in Table ??. This set of experiments
were conducted with

::
II.

:::
The

::::::::::::
compromised

::::
VMs

:::::
were

:::::::
deployed

K0
11

K0
17

K0
08

K0
14

K0
15

K0
16

K0
06

K0
10

K0
05

K0
12

K0
13

K0
18

K0
09

K0
26

K0
20

Othe
r

Log Template Keys

105

6 × 104

2 × 105

Lo
g

Ev
en

t C
ou

nt

0

20

40

60

80

100

Pe
rc

en
ta

ge

(a) CTDD Log Keys Pareto, showing top 15 log template keys and the
remaining 431 log template keys classified as “Other”

K0
01

K0
02

K0
03

K0
04

K0
05

K0
06

K0
07

K0
08

K0
09

K0
10

K0
11

K0
12

K0
13

K0
14

K0
15

Othe
r

Log Template Keys

0.0

0.5

1.0

1.5

Lo
g

Ev
en

t C
ou

nt

1e6

0

20

40

60

80

100
Pe

rc
en

ta
ge

(b) HDFS Log Keys Pareto, showing top 15 log template keys and the
remaining 35 log template keys classified as “Other”

Fig. 2.
::::::::
Distribution

::
of

:::
Log

:::
Key

:::::::
Templates

:::
by

:::::
Dataset

::::
CTDD

::
vs.

::::
HDFS

8

TABLE II

::::::::
MALICIOUS

:::::::
SAMPLES

::
OF

:::::
CYBER

::::::
THREAT

::::::::
DETECTION

:::::::
DATASET

Attack Case Description of Scenario References # of logs
GonnaCry GonnaCry is an academic Ransomware program that

::::::::
ransomware

::::::
program

::::
which

:
allows

users to infect a client to encrypt
:
by
::::::::

encrypting files, peripheral devices, and destroy
original files. It does not have all the features of WannaCry2.0

S0366 129

ech0raix A ransomware family that targets QNAP Network Attached Storage (NAS) devices.
Devices are compromised by bruteforce attacks or

:
by

:
exploiting known vulnerabilities.

The ransomware executes a malicious payload that encrypts targeted file extensions on
the NAS.

T1486 27

ACK Flood An attack that exhausts OS finite TCP connections by sending a flood of ACK packets
for non existing connections and

:::::::
nonexistent

:::::::::
connections

::::
while leveraging the stateful

nature of the TCP protocol.

T1499.001 114

NTP DDoS Am-
plification

A DoS Reflection Amplification Attack. The attack send
:::
sends

:
packets to a third-party

server with the spoofed address of a target
:
a
:::::
spoofed

:::::
source

::
IP

::::::
address.

T1498 406

SYN Flood An attack that exhausts OS finite TCP connections by sending excessive amounts
:::
large

::::::
quantities

:
of SYN packets where the 3-way TCP handhake

:::::::
handshake is never completed

T1499.001 132

malaria An injection attack that injects malicious code via ptrace
:::
trace

:
system calls. The trace

system call injection is usually executed by writing arbitrary code into a running process.
T1055-008 182

nemox A half-virus for infecting any ELF files in a specific directory. T1027-001 109
nf3ct0r A virus for infecting ELF files. Also know as an ELF infector. T1027-001 135
utrojan Universal trojan

::::
Trojan

:
for accessing an unauthorized system. T1036-004 221

Lin Blackhole A malicious program created using C programming language which on infecting the
victim

:::
upon

::::::
infecting

:::
the client provides a backdoor to the attacker.

T1587-001 and T1588-001 74

Lin Ovason A malicious program created using C programming language which on infecting the
victim

:::
upon

::::::
infecting

:::
the client provides a password protected backdoor to the attacker.

T1587-001 and T1588-001 101

Python
Backdoor

A malicious program written using Python programming language infects the victim
client to serve a backdoor to the attacker. The attacker can obtain a simple reverse shell
using tools like netcat or socat

T1587-001 and T1588-001 179

Binom ASM A computer virus that is written using assembly language searches for ELF files in the
victim client and injects malicious payload. This computer virus requires admin level

::::::::
admin-level access for successful infection. It target

::::
targets

:
the files located in the bin

directory in the victim’s machine

T1027-001 292

Eternity ASM A computer virus that is written using assembly language that infects a target ELF file
in the victim’s machine.

T1027-001 152

Dataseg Code
Injector

A malware that injects unwanted/malicious code into the data segment of the binaries
mainly for defense evasion purposes.

T1027-001 202

Bash Spyware A simple bash script that uses built-in tools for harvesting internal system data and send

::::
sends it to a compromised mail server

:
.

T1119 46

::::::::
Ransomware

::::
Attack

:

:
A
:::
low

::::::
footprint

::::::::
ransomware

::::
attack

::::
based

::
on
::::

Data
:::::::
Encryption

:::::::
Standard

::::
(DES)

:::
that

::::
target

::::::::
Linux-based

::::::
systems.

:

::::
T1486

: ::
45

Malicious samples of cyber threat detection dataset

::::
using

:
the same cloud image used in Practicum 2020.

::
the

::::::::
Practicum

:::::
2020

:::::::::::
environment.

:

::::::::
Compared

::::
to

::::::
HDFS

:
,
::::

our
:::::::
CTDD

:::::
dataset

:::::::::
presents

::
a

::::::
greater

:::::::
variety

:::
of

::::
log

:::::::::
templates

:::::
and

::
a
::::::

more
::::::::

complex

:::::::::
relationship

::::::::
between

::::
log

:::::::::
sequences

::
in

::::
the

::::::::::
time-series.

::::
This

:::::::::
observation

:::::
was

:::::::::
validated

:::
by

:::::::::
manually

::::::::::
generating

:::::
strict

::::
rules

:::
to

:::::
parse

::::::
each

:::
log

:::
in
::::

the
::::::
HDFS

:::::
dataset

::::::
were

:::
we

:::::::::
discovered

::
a
:::::

total
:::

of
:::

50
::::::::

different
:::::::

unique
::::

log
::::::::::

templates.

:::
We

::::::::
validated

::::
that

::::
the

:::::
only

::::::::
elements

::::
that

:::::::
varied

::
in
:::::

each

:::::::
template

:::::
were

::::
the

:::::::::
parameter

:::::::
values

:::::
such

:::
as

::::::
block

:::::
IDs,

:::
IPs,

:::::
port

:::::::::
numbers,

::::
etc.

:::
In

::::
the

::::::
pareto

:::::::::
presented

:::
in

:::::
Fig.

::
??

:::
fig:paretoofdatasets ∗ 0wecanfurtherobservethatthetop10templateswiththehighestcountinthe

:::
HDFSdatasetmatch99.63%ofthedatapoints.WeperformedasimilarstudywiththelogsobtainedfromthePracticum2020clusterandmaliciousenvironmentsthatformpartofourdataset.Differentfromthestrictrulegenerationappliedinthe

::
HDFSdataset, weidentified446uniquelogtemplatesusingthespellparser.Itisimportanttonotethatthisdatasubsetonlyrepresents31.47%ofthe

:::::
CTDDdatasetwherethetop10logtemplateswiththehighestcountmatch69.37%ofourdatapoints.

:: :::
In our experimentation, we make use of the 2, 657, 112 syslogs collected from the Practicum 2020 environment and the 2, 501 syslogs collected from the 16 malicious environments presented in Table II. These logs come from a much larger set of syslog files that included information that were simultaneously collected in separate log files (e.g., kernel and collection agents logs), large error logs produced by Jupyter notebook, and malformed logs which were removed. A. Training and Testing Details

Local models at each client are based on the transformer-
model architecture presented in

:
[46]. Local log files are parsed

with
:
I. In our experiments, the following hyper-parameters were

set to the following fixed values: model size d model = 512
for each hidden layer, epochs = 5, dropout = 0.2, confidence

interval g = 10, window size Λ = 10, and number of rounds
R = 10. Given that the learning rate does not present much
variance as a function of other parameters, as shown in [34],
we fixed the learning rate η = 0.01. We experimented by
varying the number of layers in the encoder and decoder stacks
N = {1, 4, 6}, the number of attention heads H = {1, 2}, and
the number of clients contributing to the update of the global
FL model Φ = {1, 2, 4, 8, 10}.

After finishing training the global FL model, we tested the
model using previously unseen non-malicious samples and the
logs collected from the compromised systems. cyber

::::
Cyber

threats are detected by comparing the ground truth key G (the
key following currently input sequence Sj) against the top
g = 10 predicted candidates. In the event where G is not
listed within the top g predicted candidates, the model labels
the prediction as an anomaly else it labels it a normal event.
The user dictates the maximum anomaly threshold (number
of sequences Sj labeled as abnormal) to classify S as a cyber

9

threat. In our experiments, we set maximum anomaly threshold
to 1, instructing the model to classify S as a cyber threat in
the event that a single sequence Sj with S is labeled as an
anomaly by the model.

All training and testing tasks were implemented using
Pytorch 1.7.1+cu110, Python 3.6.9, and OpenNMT [27] base
model implementation. The model was trained in a virtual
machine with a V100 GPU (CUDA 11.0) provided by Jetstream
Cloud [42, 44].

B. Experimental Results

We are motivated by the existing model’s performance
and interpretability features for cyber threat detection tasks.
Although each training run for an individual client local model
is relatively small, we trained over 1,200 individual models
in this experiment. In this subsection, we will first present
the results obtained with the HDFS dataset. Afterwards, we
present our proposed model’s performance with our CTDD
dataset. We compare the experimental results achieved by our
proposed model with those presented by SOTA unsupervised
centralized methods, namely, LogRobust [54], DeepLog [14],
LogAnomaly [35], and HitAnomaly [20]. As SOTA methods
used a centralized training approach, we used standard stochas-
tic gradient descent training on the full training dataset with
no client partitioning (a model built by a central entity) Φ = 1
to make the intended comparison.

First, with the HDFS dataset, our model’s parsing process
identified 31 distinct event templates from the full dataset. Table
??

::
IV

:
shows that our model’s best performance, achieving an

F-score of 0.9384 with one encoder layer, one decoder layer,
and 2 attention heads. Deeplogwho

:
,
:::::
which

:
identified E = 29

distinct event templateswhich
:
, showed a better performance

as the model learns from log event templates and parameter
values. LogRobust identified E = 29 distinct event templates
and showed to benefit from learning semantic information
from log events and contextual information from log sequences.
While their F-score performance showed to be

::::
was slightly

better than our results
:::
ours

:
(0.9500 and 0.9384 respectively),

it shows the lowest recall between all the compared works. Our
model achieved an F-score of 0.9384 while LogAnomaly,

::
On

::
the

:::::
other

::::::
hand,

:::::::::::
LogAnomaly

:
which learns the semantic and

syntax information from log templates, achieved an F-score
of 0.9000. With an f-score

::::::
F-score

:
of 0.9970, HitAnomaly

achieved the best performance of all compared models. We
attribute this achievement to the larger number of identified
event templates (46 events

::::::
E = 46

:::::
event

:::::::::
templates

:
parsed

with Drain), a positive impact introduced by the log parser
the

:
.
:::
The

:
approach taken for learning from sequences of event

templates and parameter values. HitAnomaly, LogAnomaly,
and LogRobust also introduce automatic approaches to deal
with unstable log data while DeepLog requires

:::::
require

:
human

intervention to deal with new templates. Our model it’s limits to
learning exclusively the sequential patterns from log sequences.
Yet, it takes advantage of the transformers’ ability to learn
from longer sequences and the attention given to specific log
keys within the sequence.

Performance of SOTA models on HDFS and CTDD datasets.
The second set of experiments were performed also

:::
was

:::
also

::::::::::
performed

:
with the HDFS dataset using a federated

learning setting. The federated model was evaluated using
a range of different clients Φ = 2, 4, 8, 10, number of layers
N = 1, 4, 6, and attention heads H = 1, 2.

:::::
Given

:::
the

::::
lack

::
of

:::::::::
integration

::
of

:::::::::
Federated

::::::::
Learning

::
in
::::::

SOTA
::::::

works,
::::

we
::::
were

::::
only

::::
able

::
to

:::::::
perform

:::::
such

::
an

::::::::::
experiment

:::::
using

:::
our

::::::::
proposed

::::::
model.

:
The experiments demonstrated that the proposed model

outperforms models built by a central entity Φ = 1 for
most cases. Moreover, we noted

::::
note

:
that the performance

stabilizes as the number of rounds R is increased from 1
to 10. We also noted

:::
note

:
that when fixing the number of

rounds R, the performance improves as the number of clients
contributing to the global FL model is increased. In other
words, the model converges faster with a lower number of
rounds R as the number of contributing clients Φ increases.
This trend is also observed in [34]. As shown in Table ??

::
??,

our model achieved its peak performance (accuracy=0.9307,
precision=0.8867, recall=0.9706, f-score

::::::
F-score=0.9268) when

setting the hyperparameters to Φ = 10, N = 4, H = 1, and
10 epochs. We also observed a stable increase in performance
when using 2 attention heads instead of 1. The exception was
observed when setting the number of encoder/decoder layers
to 6.

The third set of experiments were performed with the CTDD
dataset. In this dataset, the parser identified 447

:::
446

:
unique

event templates E. The higher log diversity is an indicator of
the increased complexity of our dataset over the HDFS dataset.
We can observe

:::
that

:
this complexity impacts our model’s

performance across all metrics. Yet, it shows our model’s
capability to detect cyber threats in a real-world operational
setting. We also used a standard stochastic gradient descent
training on the full training dataset with no client partitioning
Φ = 1 to show the transformer model’s performance in a
centralized training approach. In contrast with our findings in
the HDFS dataset, the performance achieved with one client
or two clients showed a similar performance for all cases.
The peak performance (accuracy=0.7939, precision=0.7733,
recall=0.7733, F-score=0.7733) in a centralized setting was
achieved with 1 encoder/decoder layer and 1 attention head.

::::::::::
Furthermore,

::::::
upon

::::::
source

:::::
code

::::::::::
availability,

:::
we

::::::::::
reproduced

:::
one

:::
of

:::
the

::::::
SOTA

::::::
works

:::::
(i.e.,

:::::::::
DeepLog1)

:::::
with

:::
the

::::::
CTDD

::::::
dataset

:
.
::::

The
:::::::::

proposed
::::::

model
:::::::::

presented
:::

in
::::::::
DeepLog

::::
was

:::::::::::
implemented,

:::::::
trained,

:::
and

:::::
tested

::::
with

:::
the

::::::
CTDD

::::::
dataset.

:::::
From

::
the

::::::::::::
pre-processed

::::
log

::::
data,

:::
we

::::::::
removed

:::
the

:::::::::
parameter

:::::
values

:::
and

:::::::
trained

:::
the

:::::::
model

:::::
with

:::::::::
sequences

:::
of

::::
log

:::::
keys

::::
only

::
to

:::::::
provide

:
a
:::::::

proper
::::::::::
comparison

:::::
with

:::
our

:::::::
model.

::
A

::::::
drastic

::::::::::
performance

:::::::::
difference

::::
was

:::::::::
observed

::
in
:::::::::

DeepLog
:::::

given
::

a

::::::
F-score

:::
of

:::::::
0.9600

::::
with

::::
the

::::::
HDFS

::::::
dataset

:::::::::
compared

::
to

::
a

::::::
F-score

:::
of

::::::
0.7682

:::::
with

:::
the

::::::
CTDD

::::::
dataset.

:::::
This

::
is

::
a
:::::
direct

:::::
impact

:::::
from

:::
the

::::::::
increased

::::::::::
complexity

::
in

:::
the

::::::
CTDD

:::::
dataset

::
as

::::::::
previously

:::::::::
discussed

:::
and

::::::::
revealed

::
in

::::
Fig.

::
2

Finally, the fourth set of experiments were performed using a

1
:::::::
DeepLog:

::
the

::::
only

:::::
publicly

:::::::
available

:::
code

:::
and

:::::::::
reproducible

:::::
model.

10

Accuracy Precision Recall F-score Accuracy Precision Recall
F-score

1 83.986 92.524 70.240 79.857 79.394 77.333 77.333 77.3332
90.508 84.219 97.211 90.250 73.939 74.242 65.333 69.5044 89.642
83.063 96.823 89.417 78.788 77.027 76.000 76.5108 83.054 87.229

73.223 79.615 80.606 77.922 80.000 78.94710 85.487 76.612
97.720 85.888 80.606 76.543 82.667 79.487

1 94.432 93.755 93.936 93.845 79.394 78.873 74.667 76.7122
83.986 92.524 70.240 79.857 78.788 77.778 74.667 76.1904 89.685
83.938 95.440 89.320 79.394 77.333 77.333 77.3338 91.242 89.143

91.802 90.453 81.212 77.500 82.667 80.00010 92.634 88.285
96.507 92.213 80.606 77.215 81.333 79.221

1 89.883 85.492 93.476 89.306 78.788 72.000 65.333 75.5242
93.051 90.788 94.179 92.452 78.182 76.712 74.667 75.6764 88.096
80.063 98.084 88.162 78.788 77.027 76.000 76.5108 93.072 88.711

97.017 92.678 80.606 78.667 78.667 78.66710 93.072 88.677
97.065 92.682 78.788 77.027 76.000 76.5101 92.820 89.249 95.634
92.331 78.182 78.261 72.000 75.0002 91.209 85.504 96.992 90.886
74.545 76.190 64.000 69.5654 89.762 82.534 98.108 89.650 79.394
78.873 74.667 76.7128 92.776 88.285 96.871 92.379 80.000 79.167

76.000 77.55110 92.842 88.300 97.017 92.453 81.818 79.221
81.333 80.263

1 92.152 92.344 90.104 91.210 78.788 79.412 72.000 75.522
89.291 84.480 93.476 88.751 78.182 78.261 72.000 75.0004 88.600

84.339 91.826 87.924 78.182 76.712 74.667 75.6768 90.606
86.01794.591 90.100 79.394 76.623 78.667 77.63210 91.560

86.296 96.677 91.192 81.212 78.205 81.333 79.7391 92.568 91.697
91.875 91.786 78.788 78.571 73.333 75.8622 88.677 81.531 96.895
88.551 77.576 77.143 72.000 74.4834 82.670 89.570 69.779 78.446
77.576 77.941 70.667 74.1268 85.630 79.813 91.293 85.168 80.606

78.667 78.667 78.66710 79.830 76.660 90.420 82.974 81.818
79.221 81.333 80.263

TABLE IV
EXPERIMENTAL RESULTS USING THE

:::::::::::
PERFORMANCE

::
OF

:::::
SOTA

::::::
MODELS

::
ON HDFS AND CTDD DATASETS.HYPERAMETERS USED FOR THIS STUDY

INCLUDE: N = {1, 4, 6} ENCODER/DECODER LAYERS, H = {1, 2}
ATTENTION HEADS, AND Φ = {1, 2, 4, 8, 10} CLIENTS. OUR MODEL’S TOP
PERFORMANCE ON THE HDFS DATASET WAS ACHIEVED WITH 10 CLIENTS,
4 ENCODER LAYERS, 4 DECODER LAYERS, AND 1 ATTENTION HEAD. ON
OUR CTDD DATASET, THE MODEL’S TOP PERFORMANCE WAS ACHIEVED
WITH 10 CLIENTS, 2 ATTENTION HEADS, AND WITH 4 AND 6 ENCODER

AND DECODER LAYERS.

Methods Dataset Precision Recall F-score
DeepLog HDFS 0.9500 0.9600 0.9600
DeepLog CTDD 0.7631 0.7733 0.7682
LogAnomaly HDFS 0.8400 0.9700 0.9000
HitAnomaly HDFS 0.9910 0.9850 0.9970
LogRobust HDFS 1.0000 0.9100 0.9500
Proposed Method
Centralized HDFS 0.9375 0.9393 0.9384

Proposed Method
Federated HDFS 0.8867 0.9706 0.9268

Proposed Method
Centralized CTDD 0.7733 0.7733 0.7733

Proposed Method
Federated CTDD 0.7922 0.8133 0.8026

federated learning approach with the cyber threat
:::::
CTDD dataset.

Throughout these experiments, we observed an improved perfor-
mance stability as the number of contributing clients increased.
We also observed a greater performance with 2 attention
heads and a slight improvement when increasing the number
of encoder/decoder layers with

::::::
Φ = 10

:
clients contributing

to the global modelΦ = 10. The best performance using a
federated learning setting (accuracy=0.8181, precision=0.7922,

recall=0.8133, F-score=0.8026) was achieved with 4 and 6
encoder/decoder layers, 10 clients, and 2 attention heads. The
experimental results are shown in detail in Table ??

::
??.

::
In

::::::::
addition,

:::
an

:::::::
analysis

:::
on

::::
the

:::
log

:::::
keys

:::::::
(ground

:::::::
truths)

::::::
labeled

::
as

::::
true

::::::::
positives

:::
and

::::
true

::::::::
negatives

::::
was

::::::
made.

::
In

::::
Fig.

::
3a

:::::
each

::::::
colored

::::
bar

:::::::::
represents

::::
one

::
of
::::

the
:::
top

:::
10

::::
log

::::
keys

::::::
(ground

:::::
truth)

:::::::
labeled

::
as

::::
false

:::::::
positive

::::::
during

:::
the

::::::::
inference

::
of

::
all

:::
the

::::
logs

:::::
from

:::::::::::::
uncompromised

:::::::
clients.

::::
The

:::::
x-axis

:::::::
presents

::
the

::::
24

:::
log

:::::
keys

::::
that

::::
had

::::
the

:::::::
highest

:::::::::::
contribution

::
to
::::

this

:::::::::::
classification.

::::::::
Similarly,

::
in
::::

Fig.
:::
3b

::::
each

:::::::
colored

:::
bar

::::::::
represents

:::
one

:::
of

:::
the

:::
top

:::
10

::::
log

:::::
keys

:::::::
(ground

:::::
truth)

:::::::
labeled

:::
as

::::
false

::::::
positive

::::::
during

:::
the

::::::::
inference

::
of

:::
all

:::
the

::::
logs

::::
from

:::::::::::
compromised

:::::::
systems.

::::
The

::::::
x-axis

:::::::
presents

::::
the

:::
21

:::
log

:::::
keys

::::
that

::::
had

:::
the

::::::
highest

::::::::::
contribution

:::
to

:::
this

::::::::::::
classification.

:::::
These

::::::
graphs

:::::
share

::::
three

::::::::
common

:::
log

:::::
keys

:::::::
(K0011,

::::::
K012,

:::
and

::::::
K003)

::::::::
classified

::
as

::::
false

:::::::
positive

:::
and

::::
true

:::::::
positive

:::
for

::::
each

::::::::::::
corresponding

:::::
case.

:::
We

:::::
found

::::
that

:::
the

::::
log

::::
key

:::::
K011

::::::
“ens3

::::::::::
Configured”

::::
was

::::
often

::::::::
preceded

:::
by

::::
the

:::::
keys

:::::
K005

::::::
“ens3

::::::
DHCP

:::::
lease

:::::
lost”

:::
and

:::::
K010

::::::
“ens3

::::::::
DHCPv4

::::::::
address”

:::::
which

::::
are

:::
all

::::::
related

::
to

::
the

:::::
linux

:::::::
network

::::::::
manager

:::::::::::::::::
“systemd-networkd”

::::
that

::::::
assigns

:
a

::::::
defined

::
IP

:::::::
address

::
to

:::
the

::::::::
interface.

::::
Such

:::::::
sequece

:::
of

::::::::
operations

:
is
::

a
:::::::

normal
:::::::::
behaviour

:::::::::
commonly

:::::
seen

:::
as

:::::::
normal.

::::
The

:::
log

:::
key

:::::
K087

:::::
”High

:::::::::
aggregate

::::::
context

::::::
switch

::::
rate”

:::::::
appears

::
in

:::
the

::::::
syslogs

:::::
when

:::
the

::::::
average

:::::::
number

::
of

:::::::
context

:::::::
switches

:::
per

::::
CPU

:::
per

::::::
second

::::::::
exceeded

::::::::
threshold

:::::
over

:::
the

::::
past

::::::
sample

::::::::
interval.

::::
This

:::
log

::
is

::::
often

::::::::
preceded

:::
by

::::::
activity

:::::
from

::::::
Jupyter

::::
Lab

:::::
where

:::::::
intensive

::::::::::
computing

::::::::
processes

::::::
where

:::::::::
executed

:::
by

:::
the

::::
user

:::::
during

:::::
short

::::::
periods

:::
of

::::
time.

::::::::::
Therefore,

:::
the

:::::
model

::::::
learns

:::
that

:::::
19/20

:::::
times

:::
the

:::::
K011

:::
is

::::::::
preceded

::
by

:::::
logs

::::::::
generated

:::
by

:::
the

:::::::
network

:::::::
manager

::::
and

:::::
1/20

:::
the

:::::::::
preceded

::::
keys

::::
will

:::::::
include

::::::
syslogs

::::::::
generated

:::
by

:::::::
Jupyter

:::
Lab

::::
and

:::
the

::::::
Linux

::::::::::
performance

:::::::
co-pilot.

:::
For

::::
this

:::::::
reason,

:::
the

::::::
model

:::
in

:::::
1/20

:::::
cases

::::
will

:::
opt

::
to

:::::::
identify

:::::
K011

::
as

::::::::
anomaly

:::::
(true

:::::::
positive)

::
if
::::

the
:::
key

::::::
K087

:
is
::::::::

observed
:::::::

within
:::
the

:::::
input

::::::::
sequence

:::::
even

:::::
when

::::
log

::::
keys

:::::
linked

:::
to

:::
the

::::::::
network

::::::::
manager

:::
are

::::
also

:::::::::
observed.

::::
For

:::
the

:::
true

::::::::
positives

::::::
cases,

:::
the

::::
log

:::
key

::::::
K011

::
is
:::::::

labeled
::
as
::

a
::::

true

::::::
positive

:::::
when

::
it

::
is

::::::::
preceded

::
by

:::::
K426

::::::
“proto

:::::::::
precision”,

:::::
K443

::::::::
“callbacks

::::::::::::
suppressed”,

::::
and

:::::
K444

:::::::::::::
“nf conntrack

:::::
table

:::
full

:::::::
dropping

:::::::
packet”

:::::::
which

:::
are

:::::::
related

:::
to

:::
the

:::::::::
precision

::::
time

:::::::
protocol,

::::::::
network

:::::::::::
connectivity,

::::::
limits

:::
on

:::::::
syslog

::::::::
messages

:::::
posted

:::
by

:::
the

::::::
kernel.

:::::::
Because

:::::
K011

::
in

::::
most

:::::
cases

::::::::
preceded

::
by

:::::::::::::::::
“systemd-networkd”,

:::
the

::::::
model

:::::::
predicts

::::
other

::::
keys

:::::
than

:::::
K011

:::
and

::::::::
considers

::::
this

::
as

:::
an

:::::::
anomaly

:::::
(true

::::::::
positive).

:

V. MODEL INTERPRETABILITY

The
:::::::
attention

:::::::::
mechanism

:::::
used

::
in

:::
the

::::::::
presented

::::::::::
transformer

:::::
model

:::::::
allows

:::
us

:::
to

::::
deal

:::::
with

:::::::::
problems

:::::::::
emerging

:::::
from

::::::::::
time-varying

::::
data

::::::::::
(sequences)

::::
and

::::::
provide

:::
an

:::::::::::
interpretation

::
of

::
the

:::::::
model’s

::::::::
behavior.

::::
The

:::::::
attention

::::::::::
mechanism

:::::
looks

::
at

::
all

:::
the

:::::::
different

:::
log

::::
keys

::
at

:::
the

:::::
same

::::
time

:::
and

:::::
learn

::
to

::::
“pay

:::::::::
attention”

::
to

:::
the

::::::
correct

:::::
ones

::
to

:::::::::::
successfully

::::::
predict

::
a
::::

log
:::
key

::::
(top

::
g

:::::::::
candidates)

::::
that

:::
has

:::
the

::::::
highest

::::::::::
probability

::
to

:::::
follow

:::
the

:::::
given

::::
input

:::::::::
sequence.

::
In

:::
this

:::::::
context,

::::::::
attention

::
is

::::::
simply

:
a
::::::

notion
::
of

:::::::
memory

::::::
gained

::::
from

::::::::
attending

::
at

:::::::
multiple

:::::
inputs

:::::::
through

:::::
time.

::::::
During

:::
the

:::::::
training

:::::
phase,

::::::::
attention

:::::::
weights

::::
store

:::
the

:::::::
memory

11

K0
03
K0

04
K0

07
K0

09
K0

10
K0

12
K0

14
K0

16
K0

18
K0

20
K0

21
K0

26
K0

31
K0

34
K0

43
K0

47
K0

58
K0

77
K0

87
K1

02
K1

03
K1

04
K1

05
K1

21

Log Keys from Input Sequences

0

10

20

30

40

50

60

70
Ag

gr
eg

at
ed

 A
tte

nt
io

n
K005
K011
K012
K006

K008
K020
K010

K014
K017
K003

(a) Top log keys (ground truths) detected as false positives in the CTDD
dataset for normal operations.

K0
07
K1

70
K2

70
K3

27
K4

19
K4

20
K4

22
K4

23
K4

24
K4

25
K4

26
K4

27
K4

28
K4

29
K4

30
K4

31
K4

32
K4

40
K4

41
K4

43
K4

44

Log Keys from Input Sequences

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ag
gr

eg
at

ed
 A

tte
nt

io
n

K423
K441
K443
K432

K011
K051
K003

K012
K430
K421

(b) Top log keys (ground truths) detected as true positives in the CTDD
dataset for malicious samples.

Fig. 3.
:::::::
Aggregated

::::::
attention

:::
for

:::
each

:::
log

:::
key

::::::::
influencing

::
the

:::::::
prediction

::
of

::
true

:::::::
positives

:::
and

:::
false

::::::
positives

::
in
:::
the

::::
CTDD

::::
dataset.

:::
that

::
is
::::::

gained
::::::::

through
::::
time

:::
of

:::
the

::::::::::
relationship

::::::::
between

:::
log

::::
keys

::
in

:::
the

:::::
input

::::::::
sequence

::::
and

:::
the

::::::::::::
corresponding

:::::::::
successful

:::::::::
predictions.

:::
By

:::::::::
inspecting

:::
the

::::::::::
distribution

::
of

::::::::
attention

::::::
weights

::
for

:::
all

:::::
keys

::
in

::
a

:::::
given

:::::
input

::::::::
sequence,

::::
we

:::
can

::::
gain

:::::::
insights

:::
into

:::
the

::::::::
behavior

:::
of

:::
the

::::::
model,

:::
as

::::
well

:::
as

::
to

::::::::::
understand

::
its

:::::::::
limitations.

:

:::
The

:
attention-based interpretability module aggregates at-

tention calculated in the transformer model, as shown in
Section III-D

::
V, and generates visualizations presenting the

difference attention distribution between normal operations and
cyber threats. To demonstrate the applicability of our proposed
model and the use case of our interpretability module, we
present two case scenarios: (1) A real-world operational setting
where

:
in

::::::
which

:
multiple business units connecting multiple

uncompromised systems are contributing to the generation of
a global federated model, and (2) A

::
An

:
organization being

attacked with a DoS attack.

A. Cyber Threat Forensics in a Real-World Operational Setting

Lets us assume that an American Healthcare System
::
For

:
a
:::::::::
real-world

::::::::
example,

:::
let

::
us

:::::::
imagine

:::
an

::::::::
American

:::::::::
healthcare

::::::
system with a network of providers and health facilities that
offer

:::::::
offering a full range of healthcare services from preventa-

tive to post-acute care. The American Health System
::::::::
healthcare

::::::
system seeks to integrate a novel cyber threat detection system
into the existing Security Information and Event Management
(SIEM). The security analysts have identified specific facilities
that have not been previously compromised by threat actors.
The healthcare system has maintained HIPAA compliance
and has stored system, event, and audit logs from the past
6 years. Training a module for cyber threat detection in a
centralized setting would require to gather

:::::::::
aggregating

:
data

from each provider and health facility into a single server.
Nevertheless, as log files contain workforce members login,
failed login attempts, software updates, downloaded programs,
change of passwords, EHR logins, patient data access, changes
to eHPI, among others

::::
other

::::::::::
information, sharing logs to a

central entity poses high security risks and potential violations
to HIPAA. To prevent such risk

:
a
:
scenario and facilitate the

model to learn
:::::
model

:::::::
learning

:
from log data across

::
for

:
multiple

health facilities, the security administrators decide to use our
interpretable federated transformer log learning model for threat
forensics.

Interpretability attention-based weights ZSφ and ZSΥ
φ

computed by the client’s corresponding interpretability module
with their uncompromised data.

After each care facility trains a local model using exclusively
their local data, they use the interpretability module to visualize
the main

::::::
identify

:::
the

::
log keys (each associated with one

log template) contributing to correct predictions. Each correct
prediction matching the log key (ground truth) that follows
the input sequence is influenced by the attention of each log
key in the input sequence.

::::
from

::
a

:::
set

:::
of

:::::
input

::::::::::
sequences)

:::
that

::::
had

::::
the

:::::::
highest

:::::::::
influence

::
to

::::
the

::::::::
model’s

::::::
correct

:::
or

::::::::
erroneous

::::::::::
predictions.

:
As the model was trained with data

from uncompromised systems, the aggregated attention
::::
initial

:::::::
saliency

::::
map computed by the interpretability module provides

a representation of the attention distribution across all log keys
during normal operations .

In Fig. ?? we present the aggregated attention from 2 clients
computed by our interpretability module. We can observe the
difference in attention distributed across all keys from

:::
for

::
all

:::
log

::::
keys

::::::::
identified

::::::
across all input sequences . In addition, we

can observe that most of the attention concentrates on the log
keys in the input sequences with lower value. Furthermore, in
Fig. ??

:::
with

::::::
respect

:::
to

::::
each

::::::::
evaluated

:::::::
ground

::::
truth

:::::
label.

:

::
In

::::
Fig.

::
4
:

the interpretability module breaks down the
attention of every key in the input sequence influencing each
correctly predicted log key (ground truth). The saliency map
shows that lower keys highly influence most correctly predicted
log keys (ground truths) following all input sequences.

:::::::
Different

::::
from

:::::
client

::
1,

:::
we

:::
can

:::::::
observe

::::
that

:::
the

:::::::
model’s

:::::::::
predictions

:::
for

::::
client

::
2
::::

had
::
a
::::::
higher

::::::::
influence

:::::
from

:::
log

::::
keys

:::::::
plotted

::
in

:::
the

::::::::
right-hand

::::
side

:::
of

:::
the

:::::::
subplot.

::::
Yet,

::::
for

::::
both

:::::::
clients,

:::
we

:::
can

::::::
observe

::::
that

:::
log

::::
keys

::::::
plotted

::
in
::::

the
:::::::
left-hand

::::
side

::
of

:::::
each

:::
plot

12

Fig. 4.
::::::::::
Interpretability

:::::
weights

::::
ZSΥ
φ :::::::

computed
::
by

:::
the

:::::
client’s

:::::::::
corresponding

::::::::::
interpretability

:::::
module

:::
with

::::
their

:::::::::::
uncompromised

:::
data.

Fig. 5.
:::
Top

:::
Left:

::::::::
Aggregated

:::::::
attention

::
by

::::
input

::
log

:::
key

::
of

::::
NTP

:::
DoS

:::::
attack.

::
Top

:::::
Right:

::::::::
Aggregated

::::::
attention

::
by

:::
input

:::
log

::
key

::
of

::::
SYN

::::
Flood

::::
attack.

:::::
Bottom

:::
Left:

::::::::
Aggregated

::::::
attention

::
by

::::
input

:::
log

::
key

::
of
:::
BT

:::
DoS

:::::
attack.

:::::
Bottom

:::::
Right:

::::::
Federated

::::::
attention

::
of
::::

NTP
:::::
DDoS,

::::
SYN

::::
Flood,

:::
and

:::
BT

::::
DDoS

::::::
attacks.

:::
had

:::
the

:::::::
highest

::::::::
influence

::
to

:::
the

:::::::
model’s

:::::::::
prediction.

:

B. Attack Scenario

In this scenario, an organization hires an ethical
:::::::
contracts

:
a

hacker to launch a cyberattack
::::
cyber

::::::
attack on its competitor

with a motive to bring operational disruption and distractionof
its competitor. In this case, the hacker/attacker intends to launch
a volumetric DDoS attack against the target organization’s
web server. The attacker uses a popular scanning tool in the
reconnaissance phase to find that the victim’s organization is
running Ubuntu 18.04 and is protected with a simple firewall.
The attacker notices that an NTP amplification DDoS attack
would be a perfect protocol to exploit as the victim’s web
server had its UDP port 123 open and the server seems to be
an open resolver. As the attacker understands that the victim’s
organization is unable to detect the source of the attack, the

attacker decides to carry out the NTP amplification DDoS
attack over

:::::
rather

::::
than

:
other volumetric DDoS attacks. The

attacker aims to send high amount
:::::::
amounts of spoofed requests

to the NTP servers that has the monlist command enabled with
the response pointing the victim organization’s web server.
The attacker who now controls the NTP server

:::
and

:
sends out

large amount
:::::::
amounts

:
of UDP responses back to the victim’s

web server. This consumes the victim’s network bandwidth,
disrupting normal operation and service availability to the
victim organization’s clients. The successful attack allows the
attacker to take down his victim

:::::
disrupt

:::
the

::::::
victim

::::::::::
organization

:::
and

::
its

::::::
clients

:
for a desired amount of time.

Log Key − Log Templa te
−

268 <*> <*> c t n e t l i n k v0.<*> r e g i s t e r i n g w i t . . .
269 l i n k c o n f i g a u t o n e g o t i a t i o n i s u n s e t o r . . .
270 WARNING Unknown i n d e x <*> s een r e l o a d i n g . . .
271 <*> Link UP
164 t ime <*> <*>”” l e v e l i n f o msg ”” Loading . . .
168 t ime <*> <*>”” l e v e l i n f o msg ”” Docker d . . .
169 t ime <*> <*>”” l e v e l i n f o msg ”” Daemon h . . .
171 t ime <*> <*>”” l e v e l i n f o msg ”” API l i s t . . .
170 S t a r t e d Docker A p p l i c a t i o n C o n t a i n e r Eng . . .

11 ens3 C o n f i g u r e d
9 S t a r t e d ntp −systemd − n e t i f . s e r v i c e .

420 S t o p p i n g Network Time S e r v i c e . . .
421 n tpd e x i t i n g on s i g n a l <*> T e r m i n a t e d

Corresponding log templates of each key in evaluated
sequence of NTP DDoS attack.

Top Left: Aggregated attention by input log key of NTP
DoS attack. Top Right: Aggregated attention by input log key
of SYN Flood attack. Bottom Left: Aggregated attention by
input log key of BT DoS attack. Bottom Right: Federated
attention of NTP DDoS, SYN Flood, and BT DDoS attacks.

The organization’s forensic investigators use the interpretabil-
ity module to backtrace the system activity, recorded in the
syslogs, that triggered the detection of a cyber threat. Fig. ??

:
6

presents a series of sub-sequences Sj from the victim’s syslog.
The associated templates to each key κ in Sj is presented in
Fig. ??. These are

::
7.

::::
Each

:::::::::::
sub-sequence

:::
Sj::

is
:
evaluated by the

model to compute the attention for each log key and
:::::
predict

::
the

:
top g candidatesfor each sub-sequence. We can observe

that the predicted candidates for sub-sequences S2 and S3 do
not match their corresponding ground truth keys Gj , which
are subsequently labeled as anomalies.

Additionally, forensic investigators can compare the saliency
map of the NTP attack with the ones computed from inter-
pretability attention-based weights computed for other attacks.
In this case, the saliency map for previously known SYN Flood
and BT DDoS attacks is shown in Fig. ??

:
5. By comparing the

saliency maps of the NTP DDoS and SYN Flood attacks, we
can observe their shared attention distribution. Also

::::::
Further, the

distribution similarity of each attack can be compared against
a saliency map of the federated interpretability attention-based
weights ZSΥ

Φ of the previously mentioned attacks. In Fig. ??
:
5,

we present the interpretability attention-based weights of the
NTP DDoS, BT DDoS, SYN Flood, and the federated inter-
pretability attention weights aggregating the attention-based

13

Fig. 6. Log key sub-sequences of NTP DDoS attack in sequence S processed by the federated model for predicting the g candidates. The ”
:
“Ground Truth

Keys” ”
:
following sub-sequences {S1, S2, S3} ∈ S are compared against the corresponding predicted list of g candidates for identifying anomalies leading

to cyber threats. The number of log keys for each sub-sequence is determined by the window frame parameter Λ. For every sub-sequence Sj , attention
is calculated for every key in Sj . In the proposed transformer-based model, attention is ultimately passed to a fully connected layer and subsequently to
a Softmax layer for predicting the top g candidates and the probability for each of them. For this case scenario, in sub-sequence S1 the attention highly
concentrates

::::
highly in keys 164, 168, and 11 to correctly predict the log key 9 that follows the sub-sequence. In contrast, the following two sub-sequences

S2andS3 shows
::
S2 :::

and
::
S3::::

show
:
the attention concentrated in keys 164, 169, and 11 where this

::
11.

::::
This last log key showed an attention 3 to 4 times

larger than in S1. This difference in attention across generates predictions of top g candidates that do not match the following ground truth keys, indicating a
deviation from the normal system behavior that leads

:
to the detection of this cyber threat.

weight of the three. This
::::::
weights

:::::::::::
aggregating

::::::
these.

::::
This

::::::
feature,

:
along with the previous features presented

:
, provides

forensic investigators with actionable information that leads to
an efficient analysis of system operation.

C.
::::::
Hidden

::::::
attacks

::::
and

:::::::
Negative

::::::
Cases

::
In

:::::
order

::
to

:::::::
explore

:::
the

:::::::::
limitations

:::
of

:::
our

::::::::
proposed

:::::::
model,

::
we

:::::::::::
investigated

:::::
two

::::::::
different

:::::
case

:::::::
studies

::::
that

::::::::
includes

:::::
hidden

:::::::
attacks

:::
(i.e,

::::
low

::::::
syslogs

::::::::
footprint

:::::::
attacks)

:::
and

:::::::
negative

::::
cases

:::::
(i.e.,

::::::
failed

::::::::
anomaly

::::::::
detection

::::::
cases).

:::::
That

:::::
said,

:::
we

::::::::
developed

::
a
:::
low

::::::::
footprint

:::::::::::
Ransomware

::::::
Attack

::::::
(Table

:::
II)

:::
that

:::::::
encrypts

::::
and

:::::::
decrypts

:::::
both

:::::::
“/opt/”

:::
and

::::::::
“/proc/”

:::::::::
directories

:::
Log

::::
Key

::
−

:::
Log

:::::::::
Templa te

%DIF >

:::::
268

::::: ::
<*>::::

<*>::::::::::
c t n e t l i n k

:::
v0

::::
.<*> :::::::::::

r e g i s t e r i n g
::::

w i t
:::
. . .

:::::
269

:::::: ::::::::::
l i n k c o n f i g

::::::::::::::::
a u t o n e g o t i a t i o n

::
i s

::::::
u n s e t

:::
or

::::
. . .

:::::
270

:::::: ::::::
WARNING

::::::::
Unknown

::::::
i n d e x

::::
<*> ::::

s een
::::::::::

r e l o a d i n g
:::
. . .

:::::
271

:::::: ::
<*>:::::

Link
:::

UP

:::::
164

:::::: :::
t ime

::::
<*>::::::

<*>””
::::::

l e v e l
:::::

i n f o
:::
msg

:::
””

:::::::
Loading

::::
. . .

:::::
168

:::::: :::
t ime

::::
<*>::::::

<*>””
::::::

l e v e l
:::::

i n f o
:::
msg

:::
””

::::::
Docker

::
d
:::
. . .

:::::
169

:::::: :::
t ime

::::
<*>::::::

<*>””
::::::

l e v e l
:::::

i n f o
:::
msg

:::
””

::::::
Daemon

::
h
:::
. . .

:::::
171

:::::: :::
t ime

::::
<*>::::::

<*>””
::::::

l e v e l
:::::

i n f o
:::
msg

:::
””

:::
API

:::::
l i s t

:::
. . .

:::::
170

:::::: ::::::
S t a r t e d

:::::::
Docker

::::::::::::
A p p l i c a t i o n

:::::::::
C o n t a i n e r

::::
Eng

:::
. . .

::::
11

:::::: :::
ens3

:::::::::::
C o n f i g u r e d

:::::
9
:::::::::::

S t a r t e d
::::

ntp
:
−
:::::::
systemd

:
−
:::::
n e t i f

:
.
::::::
s e r v i c e

:
.

:::::
420

:::::: :::::::
S t o p p i n g

::::::::
Network

:::::
Time

:::::::
S e r v i c e

:::
. . .

:::::
421

::::: :::
n tpd

::::::::
e x i t i n g

:::
on

:::::::
s i g n a l

::::
<*> ::::::::::

T e r m i n a t e d

Fig. 7.
:::::::::
Corresponding

:::
log

:::::::
templates

::
of

:::
each

:::
key

::
in
:::::::

evaluated
::::::
sequence

::
of

:::
NTP

:::::
DDoS

::::
attack.

::
on

::
a
:::::::::::
Linux-based

:::::::
system.

::::
The

:::::::::::
ransomware

:::::
attack

:::::::
posted

:
a

::::
very

:::
low

:::::::
number

:::
of

:::::::
syslogs

::::::::::::
demonstrating

:::
its

:::
low

:::::::::
footprint.

::::::::::
Nonetheless,

::::
our

::::::
model

::::
was

::::
able

:::
to

::::::
detect

:::
its

::::::::
activities

::
as

::::::::
malicious

::::
with

::::
high

:::::::::
precision.

:::
On

:::
the

:::::
other

:::::
hand,

::::
one

::
of

:::
the

:::::
attack

:::::
cases

:::
that

::::
we

:::::::::
considered

::
in

:::::
Table

:::
II,

:::::::
namely,

:::::::
ech0raix

:::::::::
manifested

::
as

::
a
:::::::
negative

:::::
case.

::
In

::::
this

::::::::
instance,

:::
our

::::::::
proposed

:::::
model

:::::
failed

::
to

:::::
detect

::::
any

::::::::
malicious

::::::
activity

::::::
linked

::
to

::::::::
ech0raix.

::::
After

:::::::::::
investigating

:::
the

:::::
logs,

:::
we

:::::::::
associated

::::
this

:::::
failed

::::
case

::
to

::
the

::::
fact

:::
that

:::
all

:::::::
ech0raix

:::::::
network

::::::
traffic

:::::::
activities

::::::
where

:::::
posted

::
to

:::
the

::::::
kernel

::::
logs

::::::::
(detected

:::
by

::::::
UFW),

:::::
while

::::
our

:::::
study

::::
only

::::::
focuses

:::
on

:::::::
syslogs.

::
To

::::
that

::::::
extent,

:::
we

::::
can

::::::::::
confidently

::::
state

::::
that

:::
our

::::::::
proposed

:::::
model

::
is

::::
able

::
to

:::::
detect

::::::
hidden

:::::::
attacks,

:::::
while

:::::::
possible

:::::::
negative

::::
cases

::::
may

::::
still

:::::
occur

::::
due

::
to

:::::::
distinct

:::
log

:::::::
posting

:::::
(e.g.,

:::::
kernel

::::
logs,

::::
auth

:::::
logs).

:

VI. DISCUSSION

In the previous two case scenarios we demonstrated how
the attention distribution differed between uncompromised
systems and systems

:::::::
scenario

::::::::
presented

::
in

:::
the

:::::::
previous

:::::::
section,

::
we

:::::
used

:::
the

::::::::::::
interpretability

:::::::
module

::
to

:::::::
generate

:
a
:::::::
saliency

::::
map

::::
from

::::
logs

:::
of

:
a
:::::::

system targeted by a NTP DDoS attack
::
and

::
the

::::::::
saliency

::::
map

:::::
from

:::::
logs

::::::::
collected

:::::
from

:::::::::::::
uncompromised

::::
client

:::::::
systems. The same approach was followed to evaluate

all log sequences from uncompromised and compromised
systems included in our CTDD dataset. Fig. ??

:::
The

:::::::
saliency

:::
map

:::::::::
presented

::
in

::::
Fig.

::
8 (left) shows the aggregated attention

for each log key in the input sequence from all uncompromised
clients computed by our interpretability module. Similar to the

14

previous results, when comparing with the attention computed
from all sequences from compromised systems

:::::::
observed

:::::
across

::
all

:::::
input

::::::::
sequences

::::::::
(obtained

:::::
from

:::::::::::::
uncompromised

:::::
client

:::::
logs)

:::::
where

:::
the

:::
log

:::
key

:::::::
(ground

:::::
truth)

:::::::::
following

:::
the

::::
input

::::::::
sequence

:::
was

::::::::
correctly

::::::::
predicted.

:::::::::
Similarly,

:::
the

:::::::
saliency

::::
map

::::::::
presented

::
in

::::
Fig.

::
8
::::::

(right)
::::::

shows
::::

the
::::::::::

aggregated
::::::::

attention
::::

for
::::
each

:::
log

:::
key

::::::::
observed

::::::
across

:::
all

:::::
input

:::::::::
sequences

:::::::::
(obtained

::::
from

:::::::::::
compromised

:::::
client

:::::
logs)

::::::
where

::::
the

:::
log

::::
key

:::::::
(ground

::::::
truth)

::::::::
following

:::
the

:::::
input

::::::::
sequence

:::
did

:::
not

::::::
match

::::
any

::
of

:::
the

::::
top

:
g

::::::::
candidates

:::::::::
predicted

::
by

:::
the

:::::::
model.

:::::
When

:::::::::
comparing

:::
the

::::
two

::::::::
saliency

:::::
maps, we can observe

the difference in attention distributed across all keys. In
addition

:::::::
attention

::::::::::
distribution

:::::::::
difference

::::::
across

:::
all

::::
log

:::::
keys.

::::
Also, we can observe that most of the attention in uncom-
promised systems concentrate

::::::::::
concentrates in log keys with

lower value while attention in compromised systems, shown
in Fig. ??

:
8 (right), concentrate in log keys with higher value.

Fig. ?? (left) presents the saliency map with the attention
of every log key in the input sequence influencing each
correctly predicted log key (ground truth) following the
input sequence. Fig. ?? (right) presents the saliency map
with the attention of every log key in the input sequence
influencing each detected anomaly which are ground truth
label not matching any of the predicted top g candidates.
The saliency map show

::::
From

::::
this

::::::::::
information,

::::
we

:::
can

::::
note

that log keys in the input sequence with high values highly
influence the detection of anomalies trigger by most log keys
following the input sequence. In this case, we also observe the
same difference in attention distribution between compromised
and uncompromised systems.

::::
(true

::::::::
positives)

::::
and

:::
the

::::::
correct

::::::::
prediction

:::
for

::::
true

:::::::::
negatives.

To measure the distribution difference for a specific sample,
the interpretability module performs a goodness of fit test of

::
for

:
the corresponding ZSΥ

φ with respect to a given federated
ZSΥ

Φ . We computed ZSΥ
φ for the syslogs of the cyber threats

listed in Table ??
:
II. We calculated the Chi-square

::::::::
chi-square

Fig. 8.
::
On

:::
the

::::
left:

::::::
Saliency

::::
map

::
of

::::::::
aggregated

::::::
attention

::
of
::::::

Clients
::
1

::
and

::
2
:::::::

computed
:::

by
:::

the
:::

FL
::::::::::

interpretability
:::::::

module.
::
On

:::
the

:::::
right:

:::
The

:::::
saliency

::::
maps

::::
show

::
a
::::
clear

:::::::
difference

::
in

::
the

::::::::
distribution

::
of
:::::::

attention
:::
from

::::::::
independent

:::::
sample

:::
data

:::::
points

::::::::
representing

::::::
different

:::
case

:::::::
scenarios

:::::
(normal

::::::::::::
non-compromised

::::::::
environment

:::
and

::::
NTP

:::::
DDoS

::::
cyber

:::::
threat).

:::
The

::::::
attention

:
of
:::::

client
::::::
systems

::::
shows

::
a
:::::
higher

:::::::::
concentration

:::
on

:::::::::::::::
ki ∈ K, i = 1, . . . , 26

::::
while

:::
the

:::::::
attention

::
of

:::
the

:::::
NTP

:::::
DDoS

::::
cyber

:::::
threat

::::::::::
concentrates

::
on

::::::::::::::::::
ki ∈ K, i = 424, . . . , 444.

Fig. 9.
::
Box

:::
plot

::
of

::::::::
Chi-Square

:::::
statistic

:::::::
computed

::
for

::::
ZSΥ
φ :

of
::::
each

:::::::
cyberattack

:
in
:::
the

::::
CTDD

:::::
dataset

:::
with

:::::
respect

:
to
:::

the
::::::::::
federatedZSΥ

Φ :
of
::
all

::::
cyber

:::::
threats

::::
(left)

::
and

::::
ZSΥ

Φ ::
of
::
all

:::::::::::
uncompromsed

::::::
systems.

statistic for each ZSΥ
φ with respect to the federated ZSΥ

Φ of all
cyber threats, shown in Fig. ?? (left

:
8
::::::

(right). We performed
the same comparison with respect to the federated ZSΥ

Φ of
uncompromised systems, shown in Fig. ?? (right

:
8
::::
(left).

On the left: Saliency map of aggregated attention of Clients
1 and 2 computed by the FL interpretability module. On
the right: The saliency maps show a clear difference in the
distribution of attention resulting from independent sample sets
of data points representing different case scenarios (normal
non-compromised environment and NTP DDoS cyber threat).
The attention of client systems shows a higher concentration
on ki ∈ K, i = 1, . . . , 26 while the attention of the NTP DDoS
cyber threat concentrates on ki ∈ K, i = 424, . . . , 444.

The Chi-square
:::
The

:::::::::
chi-square

:
statistic ZSΥ

φ of each cyber
threat with respect to the federated ZSΥ

Φ of compromised
systems, shown in Fig. ??

:
9
:
(left), computed to an average

of 42.664 and a p − value = 1. Given this
::::
these

:
results,

we do not reject the hypothesis that the cyber threats
::
can

:::::::::
confidently

:::::
state

::::
that

:::
the

::::::::
attention

::::::::
obtained

:::::
from

:::
the

:::::
cyber

:::::
threats

::::
logs

:
share the same distribution as the federated ZSΥ

Φ

of compromised systems. On the other hand, the Chi-square

::::::::
chi-square

:
statistic of each cyber threat with respect to federated

ZSΥ
Φ of uncompromised systems, shown in Fig. ??

:
9
:
(right),

computed to an average of 66452.6871 and a p− value = 0.
The Chi-square

:::::::::
chi-square statistics for the latter comparison

where
::::
were far greater than the range within the chi-square

statistic , shown in Fig. ??, with 448
::::
with

::::
445

:
degrees of

freedom. Given these results, we reject the hypothesis that the
distribution of

:::
can

::::
note

::::
that

:::
the

::::::::
attention

::::::::::
distribution

::
in

:
ZSΥ
φ

for any cyber threat differs from the distribution of federated
ZSΥ

Φ of uncompromised systems.
Such results support the effectiveness of our approach for

using attention for interpretability purposes and show that our
federated learning approach properly captures the aggregated
knowledge from multiple clients for detecting cyber threats
and evaluating distribution similarity.

Some of the observed limitations of our work include the
detection of cyber threats using fusion logs which combines
multiple types of logs(i.e., syslogs, kernel logs, audit logs,
authentication logs). Additionally, our current model is limited

15

to learn only from known log templates. Integrating previously
unseen logs for improving the performance for cyber threat
detection is yet to be explored. Additionally, we observed that
the performance for some SOTA models greatly improve when
implementing log template semantic-based. These features will
be explored in our future work.

VII. CONCLUSION

We proposed an interpretable federated transformer log
learning model for detecting cyber threats with interpretability
capabilities useful for threat forensics. Existing approaches
consist of centralized anomaly detection models that overlook
data privacy and data jurisdiction laws. As of now, none of
the existing works explore the interpretability of the model’s
predicted outcomes, obscuring the user’s visibility into the
model’s decision-making factors. Thus

:
In

::::
this

::::
way, the tech-

niques presented in this paper are an improvement over SOTA
works. The proposed approach constructs a time-series vector
from log sequences extracted from syslogscapturing system
operational

:
,
::
in

:::::
order

::
to

::::::
capture

::::::
system

::::::::::
operational

::::::
activity

:
and

user activity. Using an unsupervised approach, a transformer-
based model at each client learns the underlying patterns of
the time series. In addition, it integrates a federated learning
approach for aggregating the learned patterns from local models
to produce an updated global FL model. Furthermore, it uses
the attention values to provide visibility to the model’s decision-
making process and highlights differences in attention between
normal sequences and threat sequences.

Goodness of fit test for the multinomial interpretability
attention-based weights of each attack with respect to
the federated interpretability attention-based weights of
compromised and uncompromised systems.

Our approach demonstrated its log agnostic capability and
applicability on high-dimensional time series. Our model’s peak
F-score (93.84%) in the HDFS dataset was achieved using two
encoder and decoder layers, and 1 attention head. While it does
not outperform SOTA works, it outclasses these

::::::::
Moreover,

:::
our

::::
work

:::::::::
outclasses

::::::
SOTA

:::::
works

:
by integrating data privacy and

visibility into the
::::::::::::
interpretability

::::
that

:::::
reveal

:::::::::
indicators,

::
as

::::
well

::
as,

:::::
main

:::::::::::
contributor’s

:::
for

:
a
:

model’s decision-making process.
In future work, we will be exploring the applicability of our
approach on different types of multivariate time-series data
including network and audit logs.

REFERENCES

[1] “Check point research,” accessed: 2021-04-29.
[Online]. Available: https://blog.checkpoint.com/2021/01/05/
attacks-targeting-healthcare-organizations-spike-globally-as-covid-19-ca
ses-rise-again/

[2] “Cisa,” accessed: 2021-04-29. [Online]. Available: https://us-cert.cisa.
gov/sites/default/files/publications/AA20-302A Ransomware\%20
Activity Targeting the Healthcare and Public Health Sector.pdf

[3] “Ctdd,” accessed: 2021-05-21. [Online]. Available: https://github.com/
cyberthreat-datasets/ctdd-2021-os-syslogs

[4] M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed, “Federated learning:
A survey on enabling technologies, protocols, and applications,” IEEE
Access, vol. 8, pp. 140 699–140 725, 2020.

[5] N. Bendre, H. T. Marı́n, and P. Najafirad, “Learning from few samples:
A survey,” arXiv preprint arXiv:2007.15484, 2020.

[6] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols, “Recurrent neural
network attention mechanisms for interpretable system log anomaly
detection,” in Proceedings of the First Workshop on Machine Learning
for Computing Systems, 2018, pp. 1–8.

[7] M. Burguess. (2020) Hackers are targeting hospitals crippled
by coronavirus. [Online]. Available: https://www.wired.co.uk/article/
coronavirus-hackers-cybercrime-phishing

[8] H. by LogPAI Team, “Loghub,” Jan. 2018. [Online]. Available:
https://doi.org/10.5281/zenodo.3227177

[9] H. Chacon, S. Silva, and P. Rad, “Deep learning poison data attack
detection,” in 2019 IEEE 31st International Conference on Tools with
Artificial Intelligence (ICTAI). IEEE, 2019, pp. 971–978.

[10] H. D. Chacon and P. Rad, “Effect of backdoor attacks over the complexity
of the latent space distribution,” arXiv preprint arXiv:2012.01931, 2020.

[11] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum,
“Understanding data lifetime via whole system simulation,” in USENIX
Security Symposium, 2004, pp. 321–336.

[12] R. Clarke and T. Youngstein, “Cyberattack on britain’s national health
service—a wake-up call for modern medicine,” N Engl J Med, vol. 377,
no. 5, pp. 409–11, 2017.

[13] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in 2016
IEEE 16th International Conference on Data Mining (ICDM). IEEE,
2016, pp. 859–864.

[14] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 1285–1298.

[15] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep
learning for cyber security intrusion detection: Approaches, datasets, and
comparative study,” Journal of Information Security and Applications,
vol. 50, p. 102419, 2020.

[16] A. Goel, K. Po, K. Farhadi, Z. Li, and E. De Lara, “The taser intrusion
recovery system,” in Proceedings of the twentieth ACM symposium on
Operating systems principles, 2005, pp. 163–176.

[17] S. E. Hansen and E. T. Atkins, “Automated system monitoring and
notification with swatch.” in LISA, vol. 93, 1993, pp. 145–152.

[18] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards automated log parsing
for large-scale log data analysis,” IEEE Transactions on Dependable and
Secure Computing, vol. 15, no. 6, pp. 931–944, 2017.

[19] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEE International Conference
on Web Services (ICWS). IEEE, 2017, pp. 33–40.

[20] S. Huang, Y. Liu, C. Fung, R. He, Y. Zhao, H. Yang, and Z. Luan,
“Hitanomaly: Hierarchical transformers for anomaly detection in system
log,” IEEE Transactions on Network and Service Management, vol. 17,
no. 4, pp. 2064–2076, 2020.

[21] A. D. Kent, “Comprehensive, multi-source cyber-security events data set,”
Los Alamos National Lab.(LANL), Los Alamos, NM (United States),
Tech. Rep., 2015.

[22] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda,
“{UNVEIL}: A large-scale, automated approach to detecting ransomware,”
in 25th {USENIX} Security Symposium ({USENIX} Security 16), 2016,
pp. 757–772.

[23] I. F. Kilincer, F. Ertam, and A. Sengur, “Machine learning methods
for cyber security intrusion detection: Datasets and comparative study,”
Computer Networks, p. 107840, 2021.

[24] T. Kim, X. Wang, N. Zeldovich, M. F. Kaashoek et al., “Intrusion
recovery using selective re-execution.” in OSDI, 2010, pp. 89–104.

[25] S. T. King and P. M. Chen, “Backtracking intrusions,” in Proceedings of
the nineteenth ACM symposium on Operating systems principles, 2003,
pp. 223–236.

[26] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “Enriching
intrusion alerts through multi-host causality.” in NDSS. Citeseer, 2005.

[27] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush, “Opennmt:
Open-source toolkit for neural machine translation,” in Proc. ACL, 2017.
[Online]. Available: https://doi.org/10.18653/v1/P17-4012

[28] C. Kuner, “Data protection law and international jurisdiction on the inter-
net (part 1),” International Journal of Law and Information Technology,
vol. 18, no. 2, pp. 176–193, 2010.

[29] K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack provenance via
binary-based execution partition.” in NDSS, 2013.

[30] B. Li, Y. Wu, J. Song, R. Lu, T. Li, and L. Zhao, “Deepfed: Federated
deep learning for intrusion detection in industrial cyber-physical systems,”
IEEE Transactions on Industrial Informatics, 2020.

16

[31] B. Lindauer, J. Glasser, M. Rosen, K. C. Wallnau, and L. ExactData,
“Generating test data for insider threat detectors.” J. Wirel. Mob. Networks
Ubiquitous Comput. Dependable Appl., vol. 5, no. 2, pp. 80–94, 2014.

[32] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a timely causality analysis for enterprise security.” in NDSS,
2018.

[33] S. Lu, X. Wei, Y. Li, and L. Wang, “Detecting anomaly in big data
system logs using convolutional neural network,” in 2018 IEEE 16th Intl
Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf
on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018, pp. 151–158.

[34] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–
1282.

[35] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun et al., “Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs.” in IJCAI, 2019, pp.
4739–4745.

[36] K.-K. Muniswamy-Reddy, U. J. Braun, D. A. Holland, P. Macko,
D. Maclean, D. W. Margo, M. I. Seltzer, and R. Smogor, “Layering
in provenance systems,” in Proceedings of the 2009 USENIX Annual
Technical Conference (USENIX’09). USENIX Association, 2009.

[37] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and
A.-R. Sadeghi, “Dı̈ot: A federated self-learning anomaly detection system
for iot,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2019, pp. 756–767.

[38] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-fi: collecting
high-fidelity whole-system provenance,” in Proceedings of the 28th
Annual Computer Security Applications Conference, 2012, pp. 259–268.

[39] J. E. Prewett, “Analyzing cluster log files using logsurfer,” in Proceedings
of the 4th Annual Conference on Linux Clusters. Citeseer, 2003.

[40] J. P. Rouillard, “Real-time log file analysis using the simple event
correlator (sec).” in LISA, vol. 4, 2004, pp. 133–150.

[41] A. J. Slagell, K. Lakkaraju, and K. Luo, “Flaim: A multi-level anonymiza-
tion framework for computer and network logs.” in LISA, vol. 6, 2006,
pp. 3–8.

[42] C. A. Stewart, T. M. Cockerill, I. Foster, D. Hancock, N. Merchant,
E. Skidmore, D. Stanzione, J. Taylor, S. Tuecke, G. Turner et al.,
“Jetstream: a self-provisioned, scalable science and engineering cloud
environment,” in Proceedings of the 2015 XSEDE Conference: Scientific
Advancements Enabled by Enhanced Cyberinfrastructure, 2015, pp. 1–8.

[43] D. J. B. Svantesson, Extraterritoriality in data privacy law. Ex Tuto
Publishing, 2013.

[44] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson et al., “Xsede:
accelerating scientific discovery,” Computing in science & engineering,
vol. 16, no. 5, pp. 62–74, 2014.

[45] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson,
“Deep learning for unsupervised insider threat detection in structured
cybersecurity data streams,” arXiv preprint arXiv:1710.00811, 2017.

[46] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint
arXiv:1706.03762, 2017.

[47] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-Nemrat,
and S. Venkatraman, “Deep learning approach for intelligent intrusion
detection system,” IEEE Access, vol. 7, pp. 41 525–41 550, 2019.

[48] S. R. Wibisono and A. I. Kistijantoro, “Log anomaly detection using
adaptive universal transformer,” in 2019 International Conference of
Advanced Informatics: Concepts, Theory and Applications (ICAICTA).
IEEE, 2019, pp. 1–6.

[49] J. Wiggen, “The impact of covid-19 on cyber crime and state-sponsored
cyber activities,” 2020.

[50] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Largescale
system problem detection by mining console logs,” Proceedings of
SOSP’09, 2009.

[51] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles,
2009, pp. 117–132.

[52] R. B. Yadav, P. S. Kumar, and S. V. Dhavale, “A survey on log anomaly
detection using deep learning,” in 2020 8th International Conference on

Reliability, Infocom Technologies and Optimization (Trends and Future
Directions)(ICRITO). IEEE, 2020, pp. 1215–1220.

[53] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[54] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 807–817.

[55] Y. Zhao, J. Chen, D. Wu, J. Teng, and S. Yu, “Multi-task network
anomaly detection using federated learning,” in Proceedings of the Tenth
International Symposium on Information and Communication Technology,
2019, pp. 273–279.

17

