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Abstract—Threat detection and forensics have become an
imperative component in every digital forensic triage. Supervised
approaches have been proposed for inferring system and network
anomalies; including anomaly detection contributions using sys-
logs. Nevertheless, most works downplay the importance of the
interpretability of a model’s decision-making process. In this
research, we are among the first to propose an interpretable
federated transformer log learning model for threat detection
supporting explainable cyber forensics. The proposed model is
generated by training a local transformer-based threat detection
model at each client in an organizational unit. Local models at
each client learn the system’s normal behavior from the syslogs
which keep records of execution flows. Subsequently, a federated
learning server aggregates the learned model parameters from
local models to generate a global federated learning model. Log
time-series capturing normal behavior are expected to differ
from those possessing cyber threat activity. We demonstrate this
difference through a goodness of fit test based on Karl-Pearson’s
Chi-square statistic. To provide insights on actions triggering this
difference, we integrate an attention-based interpretability mod-
ule. We implement and evaluate our proposed model using HDFS,
a publicly available log dataset, and an in-house collected and
publicly released dataset named CTDD, which consists of more
than 8 million syslogs representing cloud collaboration services
and systems compromised by different classes of cyber threats.
Moreover, through different experiments, we demonstrate the log
agnostic capability and applicability of our approach on a real-
world operational setting. Our interpretability module manifests
significant attention difference between normal and abnormal
logs which provide insightful interpretability of the model’s
decision-making process. Finally, we deem the obtained results
as a validation for the appropriate adoption of our approach in
achieving threat forensics in the real world.

I. INTRODUCTION

The 2019 global coronavirus pandemic (COVID-19) led
companies to shift activities from their conventional office
model work-place to a work-from home model en-masse. This
shift was enabled by the radical advancement of communication
technology, online software services, and increased bandwidth
services to perform work remotely. Despite the flexible benefits,
this work modality introduces new cyber security threats to
computing systems and infrastructures used by corporations
and individuals [47].

During the increase in COVID-19 cases, cyber attacks
targeting healthcare organizations increased by 45% compared
to an overall 22% increase in cyber attacks across all other
industries around the world [1]. Cyber attacks such as the one
launched against Britain’s National Health Service [10], Brno
University Hospital [6], and another related to a Ransomware
attack on the University of Düsseldorf (UKD) in Germany
shows that these cyber attacks involve a range of attack vectors

including Ransomware, Distributed Denial of Service (DDoS),
Botnets, and other malicious attacks. In response to these
attacks, a joint cyber security advisory was issued by the
Cyber security and Infrastructure Security Agency (CISA), the
Federal Bureau of Investigation (FBI), and the Department of
Health and Human Services (HHS) advising on an increased
and imminent cybercrime threat to U.S. hospitals and health
care providers [2].

That said, one important aspect of threat forensics is to
acquire attack provenance. For instance, the presence of a
Ransomware attack on a particular organizational machine
exhibit system behavioral changes in which the attack openly
notifies the user of the infection [20]. By employing advanced
deep learning-based threat detection models on system logs
(syslogs), cyber security analysts can better differentiate normal
system behaviors from their counterparts to ultimately achieve
anomaly detection [12, 31, 45]. Indeed, syslog analysis is
highly needed to understand the inner working and behavior
differences of an Operating System (OS). Such logs offer
valuable information about significant occurrences that explain
how the system operates in terms of software, hardware, system
processes, and system components which all can be leveraged
to detect any abnormal activity occurring within a system.

Moreover, syslogs contain sensitive information that can
provide insights on security weaknesses that are hidden from
outside scans and may disclose information about vulnerable
targets, login credentials, and security associations between
entities [39]. Therefore, exposing syslogs containing sensitive
information to a third party leads to the compromise of
data privacy. To address this liability, various anonymization
techniques, such as generalization and suppression, have been
employed by the industry to safeguard the user’s data privacy
and the system as a whole. A drawback of applying such
techniques is the decreased data usefulness for analysis and
understanding the system’s behavior. Maintaining a balance
between data usefulness and privacy preservation, therefore,
remains an important challenge when dealing with syslogs.

In addition, most proposed works also fail to include
imperative elements for the development of effective threat
detection models. These include: (1) producing, collecting,
and open-sourcing novel representative datasets, (2) adopting
techniques to ensure user data privacy during the training
process to prevent the violation of data protection [41] and
data jurisdiction laws [26], and (3) provide visibility to the
model’s decision making process for identifying system activity
triggering post-incident detection.

To address this gap, we propose the first interpretable



federated transformer log learning model for threat forensics.
Unlike other works that exclusively focus on anomaly detection
in syslogs, our proposed model incorporates the concept of
Federated Learning (FL), a machine learning setting where
multiple entities collaborate in solving a machine learning
problem under the coordination of a federated server. We
leverage the distributed nature of this concept to generate a
robust model that offers a privacy preserving solution with a
high level of security [4].

The proposed model is segmented into two main stages. In
the first stage, a local transformer-based model trained at each
client using the system’s local dataset composed of syslogs
files. Log event sequences are mapped to log keys sequences
using a parser. The mapped time-series are then embedded and
fed to a local model using stochastic gradient descent (SGD)
for learning the underlying patterns of each given sequence. In
the second stage, the learn parameters from all local models
are passed to the FL server. These are aggregated to generate
a global federated learning model. The global FL model is
then shared with all participating clients. Multiple rounds of
this cycle are executed for improving the performance of
threat detection. In the last cycle, the interpretability module
at each client computes the interpretability attention-based
weights using the latest global FL model. Clients then share
the weights with the FL server who aggregates them to
generate the federated interpretable attention-based weights.
All clients receive an updated version of the global FL model
for inference and the federated interpretable attention-based
weights used for comparing it’s attention distribution against
the one from a specific log sample, Algorithm 1.III. In addition,
the intrepretability module provides forensic investigators the
means to backtrack the log keys triggering a cyber threat
detection. To the best of our knowledge, our work is the first
to offer such benefit in a federated setting to support cyber
forensics and digital triage.

In summary, this work makes the following contributions:

• We designed and implemented the first interpretable
federated transformer log learning model for cyber threat
detection in syslog with the capability of revealing
actionable information triggering the model’s outcome.

• We validated our model’s performance by training it using
two datasets while comparing it against State-Of-The-Art
(SOTA) works.

• We discovered a strong correlation between log messages
carrying indicators of the executed threat sample and
the attention given to the corresponding mapped input
sequence triggering the threat detection.

• We generated a cyber threat detection dataset consisting
of 8,448,715 syslogs collected during the second half of
2020 from a production-level environment comprised of
62 instances running uncompromised cloud collaboration
services and 16 cloud instances running threat samples.

The rest of this paper is organized as follows: In Section
II, we present the background and related work. Section III
covers our proposed model design. Section IV present our

experimental evaluation. Section V explore the capabilities of
the model’s interpretability module. We present our discussion
in Section VI. Finally in Section VII, concluding remarks are
noted and a few future endeavors are pinpointed.

II. BACKGROUND AND RELATED WORK

In this section, we introduce existing approaches adopted in
syslog analysis and their corresponding limitations. In addition,
we discuss the concept of federated learning and attention-based
interpretability in the field of cyber security. Furthermore, we
present a brief overview of the datasets used for threat and
anomaly detection.

A. Existing Approaches for Syslog Analysis

During routine system operations, syslogs are generated
from various sources in a computer system and consist of
textual messages describing the activity throughout the global
system. Such messages provide an abundance of information
linked to the system’s behavior. That said, threat forensics
rely on periodic syslog scrutiny to unveil abnormal system
behavior originating from suspected attacks. Due to a large
number of generated logs, the examination of syslogs is not
a trivial task and can be hard if not impossible to manually
track, analyze, detect, and diagnose system problems. In what
follows, we highlight previous, as well as, emerging log-based
analysis approaches adopted in the literature and discuss their
limitations along with the newly adopted approaches:

Rule-based approaches: Early research on log-based analy-
sis proposed rule-based detection techniques. Such approaches
rely on predefined rule-sets or dynamic rules which can be
created, superseded, or deleted by existing rules at run time to
accommodate for system behavior changes and thus limit and
avoid unnecessary alert reporting. More precisely, rule-based
approaches employ regular expressions to parse and recognize
events and trigger predefined actions based on matched rules
[15, 37, 38]. For instance, Swatch [15] is a monitoring log file
system that filters unwanted data and take predefined actions
based on detected log patterns. One of its main capabilities
is to ignore duplicate entries in addition to performing rule
changes based at the time of arrival. Moreover, Logsurfer [37],
a log file analysis software, is designed to detect signatures of
complex interactions and is capable of updating its rule-set at
run-time and act accordingly.

However, two main foreseen fall-backs related to rule-based
approaches are characterized by the need for continuous rule-
sets maintenance and their significant specificity to application
scenarios. Such ongoing maintenance requires domain expertise
to define rules that describe system behaviors. Nonetheless,
possible bottlenecks could occur during expert involvement in
defining the rules. Accordingly, the literature has taken new
directions and proposed further approaches to perform log
analysis, which we discuss in the sequel.

Causality-based approaches: Causality analysis on logs
gained much attention for comprehending system activities
and to detect potential risks. These approaches leverage
backward and forwards causal graphs to identify multi-hop
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attacks [24]. In addition, causality analysis utilizes dependency
graphs [23] and action history graphs [22] which provide a
detailed dependency graph describing the system execution
sequences that occur during an intrusion. Moreover, provenance-
aware system approaches are introduced in [34] and [36] to
facilitate the integration of provenance across multiple levels
of abstraction. For example, such an approaches can help
determine malware provenance and find the source of anomalies.
Moreover, whole system simulation such as TaintBochs [9, 14]
is being used to analyze sensitive data handling at a whole
system level and to help to recover legitimate file system data
after an attack occurs.

Despite the so many credits of causality analysis in time
series problems, many concerns were related to the non-trivial
lifetime and iterative input and output processing of processes
which can cause the well-known problem of dependency
explosion [27]. Many research addressed the problem of
dependency explosion by adopting data reduction techniques
[14, 24, 27]. These approaches include Binary-based execution
partitioning and TaintBochs simulation. Nonetheless, it is not
certain that reducing the data volume of irrelevant dependencies
can lead to a decrease in attack investigation time [30]. In
addition, such data reduction can unintentionally eliminate
unnoticed important data which highly affects the results of
the analysis.

AI-based approaches: Current literature presents two main
approaches for log analysis, namely, (1) log event indices-
based and (2) log template semantics-based. In this paper, we
follow the log event indices-based approach. Both approaches
first employ a log parser to identify log templates from a
time-series of log events. Subsequently, log templates are
mapped into a time-series of vectors representing the original
sequence of log events. In contrast, log template semantics-
based approaches employ word embeddings to convert the
extracted log templates into vectors.The generated vector time-
series is then used for training supervised and unsupervised
AI-based models that learn the underlying patterns within
the vector time-series using different methods. Such methods
include Principal Component Analysis (PCA) [49], Support
Vector Machine (SVM) [16], Bi-LSTM [52], LSTM [12, 33],
and Transformers [18, 46]. Some of these works incorporate
methods to control unseen log events via human intervention
or by applying semantic vectorization techniques such as Term
Frequency-Inverse Document Frequency (TF-IDF).

Nonetheless, SOTA methods fail to preserve user data privacy,
as they are based on centralized training approaches, and lack
methods for revealing the level of influence that each element
in the time-series had over the model’s prediction.

B. Federated Learning and Attention-based Interpretability

Federated learning [32] addresses the fundamental problems
of privacy, ownership, and data locality. Federated Stochastic
Gradient Descent (FedSGD) and Federated averaging (FedAVG)
[32] are two methods used for aggregating the parameters of
local models trained at each client. Previous works on federated
learning has been applied in the cyber security domain. These

include (1) a multi-task deep neural network in federated
learning (MT-DNN-FL) for network anomaly detection, traffic
recognition, and traffic classification [53], (2) an autonomous
self-learning distributed system for detecting anomalies in IoT
devices [35], and (3) DeepFeed [28] which applies federated
deep learning to detect cyber threats against industrial cyber
physical systems. To the best of our knowledge, no works in
the cyber forensic space has integrated federated learning and
interpretability for threat inference using syslogs.

Model interpretability in cyber forensic applications has
been explored using LSTM-based models with attention [5] by
calculating the weighted sum over the attention value vectors.
Other LSTM works, where no attention mechanisms are used,
have employed anomaly score decomposition [43] to provide
visibility on the model’s decision making process. Such works,
nonetheless, do not integrate interpretability in a federated
learning setting.

C. Datasets for Threat and Anomaly Detection

Most cyber security datasets focus on network traffic [13,
21] while the few public datasets which consist of syslogs
[50] are mostly collected from distributed systems [48] or high
performance computing infrastructure with a relatively low
number of unique log messages and data structure, in contrast
to those seen in Operating System (OS) logs. On the other
hand, datasets for cyber threat analysis have been created using
synthetic data generators [29] or using real systems but limited
to authentication events in Windows-based systems [19].

Different from these works, our Cyber Threat Detection
Dataset (CTDD) [3] is the first publicly available dataset
consisting of syslogs produced by real user activity and
synthetic threat scenarios in a modern cloud-based operational
system. The syslogs were captured from 62 virtual machines
(VMs) running uncompromised cloud collaboration services.
Synthetic threat scenarios were emulated in 16 additional VMs.
Our approach has the advantage that future research groups
can produce additional real or synthetic threat samples using
the same cloud image which is publicly available at Jetstream
Cloud [40, 42].

III. PROPOSED MODEL DESIGN

In this section, we present the proposed interpretable
federated transformer log learning model supporting threat
forensics. The proposed model is designed considering the
following assumptions: (1) Federated server and clients are
trusted. (2) The FL model is implemented without additional
privacy protection or security mechanisms beyond preserving
data locally at each client and the inherited privacy benefits
of FL. (3) Only offline learning is considered for training the
proposed model with homogeneous Independent and Identically
Distributed (IID) data. (4) Distributed optimization follows a
synchronous approach where all clients are available at all
times. (5) A typical horizontal FL architecture [51] is followed
were local datasets present different samples but share the
same feature space. The training process of our interpretable
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Fig. 1. The architecture of the proposed Interpretable Federated Transformer Log Learning for Threat Detection. A set of clients Φ contributing to the global
FL model receive a set of hyperparameters and initial model parameters W0 for training local transformer-based models using their local data. Additionally,
the interpretability module uses the model’s calculated attention by key to compute ZSΥ

φ . ZSΥ
φ is computed for normal and cyber threat case scenarios. Each

client sends the learned model parameters ∆wφt+1 and their computed interpretable attention-based weights ZSΥ
φ to the FL server. The FL server aggregates

the learned parameters to generate an updated global FL model Wt+1. Afterwards, the interpretability module at the FL server aggregates ZSΥ
φ to generate

the federated interpretable attention-based weights ZSΥ
Φ . Finally the FL server shares Wt+1 and ZSΥ

Φ

federated transformer log learning model for threat forensics
is presented in Algorithm 1.

The starting point of our proposed model’s training process,
presented in Fig. 1, takes place at client devices from each
organization unit producing log files (i.e., auth.log, syslog,
kernel, and audit.log). Log messages are processed using a
log parser that maps the time-series of log messages into
a sequence of log keys. These sequences are embedded into
vectors used for training a local model at each client that learns
the underlying patterns from the log key sequence. Each client
passes the local model’s learned parameters to the FL server.
The FL server aggregates the parameters from the participating
clients to generate the global FL model which is shared back
to the clients. Finally, an interpretability module is offered
to provide insights to the model’s decision making process
by aggregating the calculated attention given to each unique
element in the input sequence. Details of each component are
described in the following.

A. Distributed Federated Learning Architecture

In Algorithm 1, we integrate the FedAvg algorithm presented
by [32]. More specifically, we leverage this algorithm on the
federated learning server depicted in Fig. 1. In this process,
the FL server collaborates with Φ clients c1, . . . , cΦ−1, cΦ for
generating an updated global FL model. Each client trains
a local model using their local data and share exclusively
the locally computed gradients or learned model parameters
∆w1

t+1, . . . ,∆w
Φ−1
t+1 ,∆w

Φ
t+1 with the FL server.

Initial hyperparameters and model parameters W0 are passed
by the FL server to each client. FederatedSGD (FedSGD) is
an algorithm used for generating a global model in a federated
setting. In this process, the client computes the average gradient
gφ = ∇fφ(wφt ) using its local data at the current model wφt ,
Algorithm 1.I. Afterwards, clients pass gφ to the FL server who
aggregates them ∇F (Wt) =

∑Φ
φ=1(

nφ
n )gφ. The aggregated

average gradients are used for computing an updated global
FL model Wt+1 ← Wt − η∇F (Wt) where nφ denotes the
number of data points for client φ. FedAvg is an equivalent
algorithm used for updating the global FL model. In this
approach, the learned model parameters from each client are
aggregated by the FL server. Given that ∀φ,∆wφt+1 ← wφt −
ηgφ, the updated global FL model can be computed as Wt+1 ←∑Φ
φ=1(

nφ
n )∆wφt+1 Algorithm 1.II. Afterwards, the updated

global FL model is sent to all clients.

B. Log Parser

Our decentralized federated transformer log learning model
requires vector representation for the time-series of log
messages to learn the extensive and convoluted patterns and
correlations embedded within log sequences. Spell, a public
log parser [11, 17], is used for identifying log templates within
a log time-series. Given a subset of log files l where l ∈ L,
each log file (i.e., audit.log, auth.log, kernel.log, sys.log) is
composed of a finite unstructured sequence of log messages
l = {mi : mi ∈ M, i = 1, 2, . . .} where mi denotes the
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message at index position i, and M denotes all the log messages
in l.

Mapping log messages to log keys requires the log parser to
first identify the event template and variable elements from each
log message. The mathematical representation of the mapping
function is β : mi → (ei, vi)∀i, ei ∈ E, i = 1, 2, . . . where
E = e1, e2, . . . , en represents all the identified distinct event
templates in the log file l, ei represents the event template
identified in mi and vi is the corresponding list of variables.
Each distinct template in E is assigned a unique log key κi
using the mapping function ψ : ei → κi∀i, ei ∈ E, κi ∈
K, i = 1, . . . , n, where K represents the set of all unique key
values. The time-series of the mapped log keys S is presented
in the formula below:

S = {κ1, κ2, . . . , κn} ← ψ(ei)← ei ← β(mi)∀i,
mi ∈M, ei ∈ E, κi ∈ K

(1)

After all parsing operations are finished, S is segmented
into sub-sequences Sj based on defined window frames Λ as
presented in the following equations:

Sj = ((κ(j−1)Λ+p)p=1,...,Λ)j=1,...,n/Λ

= ((κ(j−1)Λ+p)
Λ
p=1)

n/Λ
j=1

= {S1, . . . , Sn/Λ}
(2)

C. Local Log Learning: Transformer-Based Model

Our proposed model integrates the work presented by
Vaswani et al. in [44]. Local models are composed by a set of
stacked encoder modules, a set of stacked decoder modules,
and the interconnections between them.

Encoder: The encoder is composed by a multi-head attention
and a feed-forward sub-layer. A residual connection is em-
ployed for each sub-layer followed by layer-normalization. The
elements in log key sequence are embedded to form a vector
list X = (x1, x2, . . . , xn) where the vector size is defined
as dm. A positional encoding vector is added to each input
embedding to provide context of their corresponding position
in the sequence. The resulting vector list is passed to the
self-attention layer.

Self-attention, used to define the relationships between every
key and the other elements in the sequence, is calculated using
3 vectors, namely, query(Q), key(K), and value(V) generated
by multiplying every vector xi with 3 matrices WQ,WK ,WV .
The resulting vectors Q,K, V have the corresponding dimen-
sions dq, dk, dv; all being smaller than dm. The output of the
self-attention layer Zs is calculated as follows:

Zs = Attention(Q,K, V ) = softmax(Q·KT /
√
dk)V (3)

To improve the performance of the attention layer, we
implement the multi-headed attention mechanism which linearly
projects the Q, K, and V matrices H times, where H represents
the number of attention heads to be used. This approach
allows the model to jointly address information from each

Algorithm 1: Interpretable Federated Transformer Log
Learning Algorithm.
Input: Hyperparameters for local models defined by

the federated server, number of clients Φ,and
number of rounds R.

Output: Updated Federated Transformer Log Learning
Model Wt+1 and Interpretability
attention-based weights ZSΦ and ZSΥ

Φ .
Initialization:

1 FL server defines the hyperparameters for the federated
model including encoder/decoder layers N , attention
heads H , and clients Φ.

Procedure:
2 while Round 6= 0 do

(I). For clients in business unit:
for all φ ∈Φ do

Local Transformer-based Model Training:
Log parser maps all log messages M to log
sequences Sj :
Sj ←M
Log key sequences Sj are embedded:
Xj ← Sj
Compute the average gradients with current
model wφt :
gφ = ∇fφ(wφt )
Update the model parameters:
∆wφt+1 ← wφt − ηgφ
Send the learned model parameters ∆wφt+1 to
the Federated Learning (FL) server.
Interpretability Module:
Compute interpretability attention-based weights
by ZSφ and ZSΥ

φ and share them with the FL
server.

end
(II). For Federated Learning Server:
Global Model Update:
Wt+1 ←

∑Φ
φ=1(

nφ
n )∆wφt+1

Interpretability Module:
Generate the federated interpretability
attention-based weights:
ZSφ =

∑H
h=1 Zh,κ

ZSΥ
φ =

∑H
h=1 Zh,κ,Υυ

Share ZSΥ
Φ with clients.

(III). For clients in business unit:
for all φ ∈Φ do

Update local model:
wφt = Wt+1 ← FederatedServer(φ,Wt+1)
Compute goodness of fit test for ZSΥ

φ :

Di =
∑υ
i=1

∑K
k=1

Z
SΥi
φ −ZSΥi

Φ

Z
SΥi
Φ

Update interpretability attention-based weights:
ZSΥ
φ ← ZSΥ

Φ

end
3 end
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log key from different representation sub-spaces at different
positions in the sequence. The resulting process is a multi-
head Zcn = Concat(Z1, Z2, ..., ZH) matrix generated by the
concatenator of individual Zh matrices resulting from each
attention-head. The Zcn matrix is then multiplied with a weight
matrix WO, trained jointly with the model, resulting in a matrix
Z that captures the information from all attention heads. The
output matrix Z is finally passed to the feed-forward sub-layer
and then to the input of the next encoder in the stack.

Z = Multi− head(Q,K, V )

= Concat(Z1, Z2, ..., ZH)WO

where

Zh = Attention(QWQ
h ,KW

K
h , V W

V
h ),

h = 1, . . . ,H

(4)

Decoder: Similar to the encoder module, the decoder module
is composed by a stack of decoders. The decoder shares
the same components of the encoder with the addition of
a encoder-decoder attention sub-layer positioned between the
self-attention and feed-forward sub-layers. Matrices K and
V , resulting from the enconder’s module output and the Q
matrix shared by the previous decoder in the stack are used for
allowing every position in the decoder to attend all positions
in the log key input sequence. In addition, the auto-regressive
decoder module adds the output of each step, the predicted log
key, with a positional encoding. In contrast with the encoder,
the self-attention layer of the decoder is only permitted to
attend earlier positions in the output sequence; this is achieved
by masking future positions before the softmax calculation
takes place.

After the multi-head attention, each encoder and decoder
has a pointwise feed-forward layer. This is applied separately
and identically to each element in the log key sequence. The
feed-forward layer consists of two linear transformation which
use ReLu activation function and is formally expressed as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (5)

The logits vector is ingested by softmax layer that transforms
the logits vector into probabilities. The element in the vector
with the highest probability is selected and the log key
associated with it is set as the output of this specific time
step.

The training data consists of sequences of mapped keys from
syslogs collected from uncompromissed systems. Sequences
of log keys within a window frames Λ are used for training
the local model. The local model is trained to predict a list of
candidate log keys given previous log keys. The transformer
neural network architecture creates a multi-classification model,
each type of log key representing a class. As stated before, this
SOTA architecture uses attention to gain context from previous
inputs when predicting the next log key. With structured data
and built model, the log key anomaly detection model is trained
to predict the next log key which represents the next log

entry. The generated prediction is fed to the model to continue
generating predictions.

After training the model, new logs are processed to generate
a new prediction of log keys. First, a log key sequence, based
on a window frame Λ, is fed to the model. Based on this input,
the model predicts the top g candidates. If the ground truth
key Gj (which follows the input sub-sequence Sj) matches
one of the top g candidates, then Sj is classified as a normal
sequence. Otherwise, the input sub-sequence Sj is classified
as abnormal. A sequence S is classified as a cyber threat if
the number of sub-sequences classified as abnormal is greater
than or equal to a threshold τ defined by the user.

In order to backtrace the source of detected anomalies, the
interpretability module presents the sequence of log keys that
triggered the detection of an anomaly and the attention for
each key in the input sequence. If a log key is classified as
abnormal, the sequence of log keys that initiated the incident
can be tracked down. The sequence that triggered that anomaly
is considered as a risk pattern. Risk patterns are then extracted
from the sequence to generate new test cases.

D. Model Interpretability

The interpretability module at each client provides insight
to the level of influence each unique log key κ ∈ K has in a
particular sequence of log keys S. The federated transformer
log learning model Wt+1 is used by the interpretability module
to evaluate a given sequence S. While the federated transformer
log learning model is trained using log key sequences S from
uncompromised systems, the interpretability module at each
client and at the FL server can be used for log key sequences
collected from compromised or uncompromised systems.

Initially, each client uses their currently available data from
their uncompromised systems. As the federated model ingests
each sub-sequence Sj ∈ S, it calculates the attention for each
key ki ∈ Sj . After processing all sub-sequences Sj ∈ S, the
interpretability module aggregates the attention of each unique
log key κ ∈ K across all Sj . We refer to this influence as
the interpretability attention-based weights. This operation is
reflected in the following equation:

ZSφ =

H∑
h=1

Zh,κ,∀κ ∈ K,∀Sj ∈ S (6)

Additionally, the model computes the normalized version
of ZSφ for generating a bar chart. This provides the user with
visibility to the influence each unique key has for all input
sub-sequences.

Z ′φ =
(ZSφ − ZSφ min)

(ZSφ max − ZSφ min))
,∀φ ∈ Φ (7)

Furthermore, the interpretability module provides additional
granularity by aggregating the attention of every unique key
κ ∈ K across all input sequences Sj for each ground truth
key Gj . Gj is also an element of Υ which denotes the list of
unique ground truth keys |Gj | from all clients. We denote υ
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as the index for each unique key in Υ. The weight calculated
by aggregating the attention of every unique key κ for all
sequences Sj influencing each Υυ is denoted by the following
equation:

ZSΥ
φ =

H∑
h=1

Zh,κ,Υυ ,∀κ ∈ K,∀Sj ∈ S, ∀Υυ ∈ Υ (8)

Similarly to equation 7, the model computes the normalized
version of ZSΥ

φ and generates a saliency map for visualization
purposes.

Z ′′φ =
(ZSΥ

φ − ZSΥ
φ min)

(ZSΥ
φ max − ZSΥ

φ min))
,∀φ ∈ Φ (9)

Each client sends the interpretability attention-based weights
ZSφ and ZSΥ

φ to the FL server. The FL server aggregates
the computed weights from each client φ and computes the
corresponding normalized analog as presented in the following
equations:

Z ′Φ norm =
(Z ′Φ − Z ′Φ min)

(Z ′Φ max − Z ′Φ min))
: ZSΦ =

Φ∑
φ=1

ZSφ (10)

Z ′′Φ norm =
(Z ′′Φ − Z ′′Φ min)

(Z ′′Φ max − Z ′′Φ min))
: ZSΥ

Φ =

Φ∑
φ=1

ZSΥ
φ (11)

The FL server shares the federated interpretability attention-
based weights ZSΦ and ZSΥ

Φ with each client. The same process
is followed for logs from compromised systems; as an example,
multiple users can send to the FL server the ZSφ and ZSΥ

φ

computed from log sequences S from compromised systems
to generate a federated interpretability attention-based weights
for cyber threats ZSΦ and ZSΥ

Φ .
After the client receives ZSΦ and ZSΥ

Φ for uncompro-
mised and/or compromised systems from the FL server, the
interpretability module conducts a multinomial distribution
goodness of fit test based on Chi-Square for ZSΥ

φ with respect
to ZSΥ

Φ for uncompromised and/or compromised systems to
quantify their corresponding statistical distribution difference.
The interpretability module tests if the interpretability attention-
based weights for a sequence of interest ZSΥ

φ has a specific
distribution by computing the Karl Pearson’s chi-square statistic
as follows:

Di =

υ∑
i=1

K∑
k=1

(
ZSΥi
φ − ZSΥi

Φ

)2

ZSΥi
Φ

,∀υ ∈ Υ,∀κ ∈ K (12)

Using the multinomial, we can then test if the given sample
ZSΥ
φ has a similar distribution to ZSΥ

Φ by testing:

H0 : ZSΥ
φ = ZSΥ1

φ , . . . , ZSΥυ
φ = ZSΥ

Φ V S

H1 : ZSΥ
φ 6= ZSΥ

Φ

(13)

Datasets Duration # of logs # of Anomalies
HDFS 38.7 hours 11,175,629 16,838 (blocks)
CTDD 235 days 8,448,715 2,501 (logs)

TABLE I
STATISTICS OF HDFS AND CTDD DATASETS

Given an observation
(
ZSΥ
φ = ZSΥ1

φ . . . ZSΥυ
φ

)
, the valid

p-values are calculated:

p− value = P

(
χ2(υ − 1) >

υ∑
i=1

K∑
k=1

(
ZSΥi
φ − ZSΥi

Φ

)2

ZSΥi
Φ

)
(14)

The interpretability module uses the p-value to fail to
reject the hypothesis H0 or reject the hypothesis H1 that the
distribution of the interpretability attention-based weights for
the given sample ZSΥυ

φ shares the same distribution as ZSΥυ
Φ .

The test rejects the null hypothesis because the cyber threat
induces a perturbation in the space from the joint distribution
point of view, making the test statistics able to account for the
difference between both cases as Chacon et al. [8] exhibited
in his research.

IV. EXPERIMENTAL EVALUATION

A. Datasets Considered

Our experiments were conducted using the two datasets
presented in Table I. The HDFS dataset [48] is composed
of 11,175,629 logs collected from a cluster of 200 Amazon
virtual machines running Hadoop-based jobs which can easily
be obtained from Zenodo [7]. The original work labeled all logs
in this dataset using handcrafted rules to classify them between
normal and abnormal. Abnormal samples in this dataset are
identified by matching a set of block ids listed as abnormal
to their appearance in the log messages. The list of abnormal
logs amount to 16,838 blocks ids.

Our CTDD dataset is composed of logs registering system
activity running uncompromised cloud collaboration services.
This environment consists of a cluster of virtual machines
deployed across multiple networks in the Jetstream educational
cloud that offer interactive computing in the cloud such as
Jupyter Lab. The normal operation syslog samples presented
in this dataset were collected from 62 VMs, each operated by
different users. No user was allowed to access a VM assigned
to another user. The threat samples from our dataset were
collected from 16 VMs running malicious software samples.

Syslogs from uncompromised VMs running cloud collab-
oration services were collected from 3 clusters, all of them
hosted Ubuntu 18.04 operating systems. Each VM was assigned
to a student to perform a variety of data analytics and
machine learning activities. ”Sudo” privileges were restricted
for ”Ubuntu” user in the Practicum 2020 cluster while the
IS 7033 and ITESM 2020 clusters had unrestricted ”root”
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Attack Case Description of Scenario References # of logs
GonnaCry GonnaCry is an academic Ransomware program that allows users to infect a client

to encrypt files, peripheral devices, and destroy original files. It does not have all the
features of WannaCry2.0

S0366 129

ech0raix A ransomware family that targets QNAP Network Attached Storage (NAS) devices.
Devices are compromised by bruteforce attacks or exploiting known vulnerabilities. The
ransomware executes a malicious payload that encrypts targeted file extensions on the
NAS.

T1486 27

ACK Flood An attack that exhausts OS finite TCP connections by sending a flood of ACK packets
for non existing connections and leveraging the stateful nature of the TCP protocol.

T1499.001 114

NTP DDoS Am-
plification

A DoS Reflection Amplification Attack. The attack send packets to a third-party server
with the spoofed address of a target.

T1498 406

SYN Flood An attack that exhausts OS finite TCP connections by sending excessive amounts of
SYN packets where the 3-way TCP handhake is never completed

T1499.001 132

malaria An injection attack that injects malicious code via ptrace system calls. The trace system
call injection is usually executed by writing arbitrary code into a running process.

T1055-008 182

nemox A half-virus for infecting any ELF files in a specific directory. T1027-001 109
nf3ct0r A virus for infecting ELF files. Also know as an ELF infector. T1027-001 135
utrojan Universal trojan for accessing an unauthorized system. T1036-004 221
Lin Blackhole A malicious program created using C programming language which on infecting the

victim client provides a backdoor to the attacker.
T1587-001 and T1588-001 74

Lin Ovason A malicious program created using C programming language which on infecting the
victim client provides a password protected backdoor to the attacker.

T1587-001 and T1588-001 101

Python
Backdoor

A malicious program written using Python programming language infects the victim
client to serve a backdoor to the attacker. The attacker can obtain a simple reverse shell
using tools like netcat or socat

T1587-001 and T1588-001 179

Binom ASM A computer virus that is written using assembly language searches for ELF files in
the victim client and injects malicious payload. This computer virus requires admin
level access for successful infection. It target the files located in the bin directory in the
victim’s machine

T1027-001 292

Eternity ASM A computer virus that is written using assembly language that infects a target ELF file
in the victim’s machine.

T1027-001 152

Dataseg Code
Injector

A malware that injects unwanted/malicious code into the data segment of the binaries
mainly for defense evasion purposes.

T1027-001 202

Bash Spyware A simple bash script that uses built-in tools for harvesting internal system data and send
it to a compromised mail server

T1119 46

TABLE II
MALICIOUS SAMPLES OF CYBER THREAT DETECTION DATASET

privileges. Furthermore, VMs in the IS 7033 clusters were
safeguarded by a firewall that allowed access to user specific IP
addresses while the Practicum 2020 and ITESM 2020 clusters
were assigned to security groups that restricted ingress traffic
to most network ports. In addition, a total of 2,501 syslogs
were collected from 16 compromised VMs running malicious
threat samples presented in Table II. This set of experiments
were conducted with the same cloud image used in Practicum
2020.

B. Training and Testing Details

Local models at each client are based on the transformer-
model architecture presented in [44]. Local log files are parsed
with Spell [11] to map the sequence M of log messages
into multiple log keys sequences Sj using a sliding window
frame approach of size Λ. The embedded vector representation
Xj of log key sequences Sj are fed to the corresponding
client’s local model for training. In our study, we train the
interpretable federated transformer log learning model for threat
detection using the datasets in Table I. In our experiments, the
following hyper-parameters were set to the following fixed
values: model size d model = 512 for each hidden layer,
epochs = 5, dropout = 0.2, confidence interval g = 10,
window size Λ = 10, and number of rounds R = 10. Given

that the learning rate does not present much variance as a
function of other parameters, as shown in [32], we fixed the
learning rate η = 0.01. We experimented by varying the number
of layers in the encoder and decoder stacks N = {1, 4, 6}, the
number of attention heads H = {1, 2}, and the number of
clients contributing to the update of the global FL model
Φ = {1, 2, 4, 8, 10}.

After finishing training the global FL model, we tested
the model using previously unseen non-malicious samples
and the logs collected from the compromised systems. cyber
threats are detected by comparing the ground truth key G (the
key following currently input sequence Sj) against the top
g = 10 predicted candidates. In the event where G is not
listed within the top g predicted candidates, the model labels
the prediction as an anomaly else it labels it a normal event.
The user dictates the maximum anomaly threshold (number
of sequences Sj labeled as abnormal) to classify S as a cyber
threat. In our experiments, we set maximum anomaly threshold
to 1, instructing the model to classify S as a cyber threat in
the event that a single sequence Sj with S is labeled as an
anomaly by the model.

All training and testing tasks were implemented using
Pytorch 1.7.1+cu110, Python 3.6.9, and OpenNMT [25] base
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model implementation. The model was trained in a virtual
machine with a V100 GPU (CUDA 11.0) provided by Jetstream
Cloud [40, 42].

C. Experimental Results

We are motivated by the existing model’s performance
and interpretability features for cyber threat detection tasks.
Although each training run for an individual client local model
is relatively small, we trained over 1,200 individual models
in this experiment. In this subsection, we will first present
the results obtained with the HDFS dataset. Afterwards, we
present our proposed model’s performance with our CTDD
dataset. We compare the experimental results achieved by our
proposed model with those presented by SOTA unsupervised
centralized methods, namely, LogRobust [52], DeepLog [12],
LogAnomaly [33], and HitAnomaly [18]. As SOTA methods
used a centralized training approach, we used standard stochas-
tic gradient descent training on the full training dataset with
no client partitioning (a model built by a central entity) Φ = 1
to make the intended comparison.

First, with the HDFS dataset, our model’s parsing process
identified 31 distinct event templates from the full dataset.
Table III shows that our model’s best performance, achieving
an F-score of 0.9384 with one encoder layer, one decoder layer,
and 2 attention heads. Deeplog who identified E = 29 distinct
event templates which showed a better performance as the
model learns from log event templates and parameter values.
LogRobust identified E = 29 distinct event templates and
showed to benefit from learning semantic information from
log events and contextual information from log sequences.
While their F-score performance showed to be slightly better
than our results (0.9500 and 0.9384 respectively), it shows the
lowest recall between all the compared works. Our model
achieved an F-score of 0.9384 while LogAnomaly, which
learns the semantic and syntax information from log templates,
achieved an F-score of 0.9000. With an f-score of 0.9970,
HitAnomaly achieved the best performance of all compared
models. We attribute this achievement to the larger number
of identified event templates (46 events parsed with Drain),
a positive impact introduced by the log parser the approach
taken for learning from sequences of event templates and
parameter values. HitAnomaly, LogAnomaly, and LogRobust
also introduce automatic approaches to deal with unstable log
data while DeepLog requires human intervention to deal with
new templates. Our model it’s limits to learning exclusively the
sequential patterns from log sequences. Yet, it takes advantage
of the transformers’ ability to learn from longer sequences and
the attention given to specific log keys within the sequence.

The second set of experiments were performed also with
the HDFS dataset using a federated learning setting. The
federated model was evaluated using a range of different
clients Φ = 2, 4, 8, 10, number of layers N = 1, 4, 6, and
attention heads H = 1, 2. The experiments demonstrated that
the proposed model outperforms models built by a central
entity Φ = 1 for most cases. Moreover, we noted that the
performance stabilizes as the number of rounds R is increased

Methods Dataset Precision Recall F-score
DeepLog HDFS 0.9500 0.9600 0.9600
LogAnomaly HDFS 0.8400 0.9700 0.9000
HitAnomaly HDFS 0.9910 0.9850 0.9970
LogRobust HDFS 1.0000 0.9100 0.9500
Proposed Method
Centralized HDFS 0.9375 0.9393 0.9384

Proposed Method
Federated HDFS 0.8867 0.9706 0.9268

Proposed Method
Centralized CTDD 0.7733 0.7733 0.7733

Proposed Method
Federated CTDD 0.7922 0.8133 0.8026

TABLE III
PERFORMANCE OF SOTA MODELS ON HDFS AND CTDD DATASETS.

from 1 to 10. We also noted that when fixing the number of
rounds R, the performance improves as the number of clients
contributing to the global FL model is increased. In other
words, the model converges faster with a lower number of
rounds R as the number of contributing clients Φ increases.
This trend is also observed in [32]. As shown in Table IV,
our model achieved its peak performance (accuracy=0.9307,
precision=0.8867, recall=0.9706, f-score=0.9268) when setting
the hyperparameters to Φ = 10, N = 4, H = 1, and 10 epochs.
We also observed a stable increase in performance when using
2 attention heads instead of 1. The exception was observed
when setting the number of encoder/decoder layers to 6.

The third set of experiments were performed with the
CTDD dataset. In this dataset, the parser identified 447 unique
event templates E. The higher log diversity is an indicator
of the increased complexity of our dataset over the HDFS
dataset. We can observe this complexity impacts our model’s
performance across all metrics. Yet, it shows our model’s
capability to detect cyber threats in a real-world operational
setting. We also used a standard stochastic gradient descent
training on the full training dataset with no client partitioning
Φ = 1 to show the transformer model’s performance in a
centralized training approach. In contrast with our findings in
the HDFS dataset, the performance achieved with one client
or two clients showed a similar performance for all cases.
The peak performance (accuracy=0.7939, precision=0.7733,
recall=0.7733, F-score=0.7733) in a centralized setting was
achieved with 1 encoder/decoder layer and 1 attention head.
Finally, the fourth set of experiments were performed using
a federated learning approach with the cyber threat dataset.
Throughout these experiments, we observed an improved
performance stability as the number of contributing clients
increased. We also observed a greater performance with 2
attention heads and a slight improvement when increasing the
number of encoder/decoder layers with clients contributing
to the global model Φ = 10. The best performance using a
federated learning setting (accuracy=0.8181, precision=0.7922,
recall=0.8133, F-score=0.8026) was achieved with 4 and 6
encoder/decoder layers, 10 clients, and 2 attention heads. The
experimental results are shown in detail in Table IV.
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Φ N H HDFS CTDD
Accuracy Precision Recall F-score Accuracy Precision Recall F-score

1

1

1

83.986 92.524 70.240 79.857 79.394 77.333 77.333 77.333
2 90.508 84.219 97.211 90.250 73.939 74.242 65.333 69.504
4 89.642 83.063 96.823 89.417 78.788 77.027 76.000 76.510
8 83.054 87.229 73.223 79.615 80.606 77.922 80.000 78.947
10 85.487 76.612 97.720 85.888 80.606 76.543 82.667 79.487
1

2

94.432 93.755 93.936 93.845 79.394 78.873 74.667 76.712
2 83.986 92.524 70.240 79.857 78.788 77.778 74.667 76.190
4 89.685 83.938 95.440 89.320 79.394 77.333 77.333 77.333
8 91.242 89.143 91.802 90.453 81.212 77.500 82.667 80.000
10 92.634 88.285 96.507 92.213 80.606 77.215 81.333 79.221
1

4

1

89.883 85.492 93.476 89.306 78.788 72.000 65.333 75.524
2 93.051 90.788 94.179 92.452 78.182 76.712 74.667 75.676
4 88.096 80.063 98.084 88.162 78.788 77.027 76.000 76.510
8 93.072 88.711 97.017 92.678 80.606 78.667 78.667 78.667
10 93.072 88.677 97.065 92.682 78.788 77.027 76.000 76.510
1

2

92.820 89.249 95.634 92.331 78.182 78.261 72.000 75.000
2 91.209 85.504 96.992 90.886 74.545 76.190 64.000 69.565
4 89.762 82.534 98.108 89.650 79.394 78.873 74.667 76.712
8 92.776 88.285 96.871 92.379 80.000 79.167 76.000 77.551
10 92.842 88.300 97.017 92.453 81.818 79.221 81.333 80.263
1

6

1

92.152 92.344 90.104 91.210 78.788 79.412 72.000 75.52
2 89.291 84.480 93.476 88.751 78.182 78.261 72.000 75.000
4 88.600 84.339 91.826 87.924 78.182 76.712 74.667 75.676
8 90.606 86.017 94.591 90.100 79.394 76.623 78.667 77.632
10 91.560 86.296 96.677 91.192 81.212 78.205 81.333 79.739
1

2

92.568 91.697 91.875 91.786 78.788 78.571 73.333 75.862
2 88.677 81.531 96.895 88.551 77.576 77.143 72.000 74.483
4 82.670 89.570 69.779 78.446 77.576 77.941 70.667 74.126
8 85.630 79.813 91.293 85.168 80.606 78.667 78.667 78.667
10 79.830 76.660 90.420 82.974 81.818 79.221 81.333 80.263

TABLE IV
EXPERIMENTAL RESULTS USING THE HDFS AND CTDD DATASETS. HYPERAMETERS USED FOR THIS STUDY INCLUDE: N = {1, 4, 6} ENCODER/DECODER
LAYERS, H = {1, 2} ATTENTION HEADS, AND Φ = {1, 2, 4, 8, 10} CLIENTS. OUR MODEL’S TOP PERFORMANCE ON THE HDFS DATASET WAS ACHIEVED
WITH 10 CLIENTS, 4 ENCODER LAYERS, 4 DECODER LAYERS, AND 1 ATTENTION HEAD. ON OUR CTDD DATASET, THE MODEL’S TOP PERFORMANCE WAS

ACHIEVED WITH 10 CLIENTS, 2 ATTENTION HEADS, AND WITH 4 AND 6 ENCODER AND DECODER LAYERS.

V. MODEL INTERPRETABILITY

The attention-based interpretability module aggregates atten-
tion calculated in the transformer model, as shown in Section
III-D, and generates visualizations presenting the difference
attention distribution between normal operations and cyber
threats. To demonstrate the applicability of our proposed model
and the use case of our interpretability module, we present
two case scenarios: (1) A real-world operational setting where
multiple business units connecting multiple uncompromised
systems are contributing to the generation of a global federated
model, and (2) A organization being attacked with a DoS
attack.

A. Cyber Threat Forensics in a Real-World Operational Setting

Lets us assume that an American Healthcare System with a
network of providers and health facilities that offer a full range
of healthcare services from preventative to post-acute care.
The American Health System seeks to integrate a novel cyber
threat detection system into the existing Security Information
and Event Management (SIEM). The security analysts have
identified specific facilities that have not been previously
compromised by threat actors. The healthcare system has
maintained HIPAA compliance and has stored system, event,
and audit logs from the past 6 years. Training a module for

cyber threat detection in a centralized setting would require to
gather data from each provider and health facility into a single
server. Nevertheless, as log files contain workforce members
login, failed login attempts, software updates, downloaded
programs, change of passwords, EHR logins, patient data
access, changes to eHPI, among others, sharing logs to a
central entity poses high security risks and potential violations
to HIPAA. To prevent such risk scenario and facilitate the
model to learn from log data across multiple health facilities, the
security administrators decide to use our interpretable federated
transformer log learning model for threat forensics.

After each care facility trains a local model using exclusively
their local data, they use the interpretability module to visualize
the main log keys (each associated with one log template)
contributing to correct predictions. Each correct prediction
matching the log key (ground truth) that follows the input
sequence is influenced by the attention of each log key in
the input sequence. As the model was trained with data from
uncompromised systems, the aggregated attention computed
by the interpretability module provides a representation of
the attention distribution across all log keys during normal
operations.

In Fig. 2a we present the aggregated attention from 2 clients
computed by our interpretability module. We can observe the
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(a) Interpretability attention-based weights ZSφ for Client 1 (Left) and Client 2
(Right). The attention for each layer in the encoder is aggregated by unique
key κ ∈ K for all Sj ∈ S.

(b) Interpretability attention-based weights ZSΥ
φ for Client 1 (Left) and Client

2 (Right). The attention of each layer in the encoder is aggregated by each
υ ∈ (y-axis) and each unique key κ ∈ K (x-axis) for all Sj ∈ S.

Fig. 2. Interpretability attention-based weights ZSφ and ZSΥ
φ computed by

the client’s corresponding interpretability module with their uncompromised
data.

difference in attention distributed across all keys from all
input sequences. In addition, we can observe that most of the
attention concentrates on the log keys in the input sequences
with lower value. Furthermore, in Fig. 2b the interpretability
module breaks down the attention of every key in the input
sequence influencing each correctly predicted log key (ground
truth). The saliency map shows that lower keys highly influence
most correctly predicted log keys (ground truths) following all
input sequences.

B. Attack Scenario

In this scenario, an organization hires an ethical hacker to
launch a cyberattack on its competitor with a motive to bring
operational disruption and distraction of its competitor. In this
case, the hacker/attacker intends to launch a volumetric DDoS
attack against the target organization’s web server. The attacker
uses a popular scanning tool in the reconnaissance phase to
find that the victim’s organization is running Ubuntu 18.04 and
is protected with a simple firewall. The attacker notices that an
NTP amplification DDoS attack would be a perfect protocol to
exploit as the victim’s web server had its UDP port 123 open
and the server seems to be an open resolver. As the attacker
understands that the victim’s organization is unable to detect
the source of the attack, the attacker decides to carry out the

NTP amplification DDoS attack over other volumetric DDoS
attacks. The attacker aims to send high amount of spoofed
requests to the NTP servers that has the monlist command
enabled with the response pointing the victim organization’s
web server. The attacker who now controls the NTP server
sends out large amount of UDP responses back to the victim’s
web server. This consumes the victim’s network bandwidth,
disrupting normal operation and service availability to the
victim organization’s clients. The successful attack allows the
attacker to take down his victim for a desired amount of time.

The organization’s forensic investigators use the interpretabil-
ity module to backtrace the system activity, recorded in the
syslogs, that triggered the detection of a cyber threat. Fig. 4
presents a series of sub-sequences Sj from the victim’s syslog.
The associated templates to each key κ in Sj is presented in Fig.
3. These are evaluated by the model to compute the attention
for each log key and top g candidates for each sub-sequence.
We can observe that the predicted candidates for sub-sequences
S2 and S3 do not match their corresponding ground truth keys
Gj , which are subsequently labeled as anomalies.

Additionally, forensic investigators can compare the saliency
map of the NTP attack with the ones computed from inter-
pretability attention-based weights computed for other attacks.
In this case, the saliency map for previously known SYN
Flood and BT DDoS attacks is shown in Fig. 5. By comparing
the saliency maps of the NTP DDoS and SYN Flood attacks,
we can observe their shared attention distribution. Also, the
distribution similarity of each attack can be compared against
a saliency map of the federated interpretability attention-based
weights ZSΥ

Φ of the previously mentioned attacks. In Fig. 5, we
present the interpretability attention-based weights of the NTP
DDoS, BT DDoS, SYN Flood, and the federated interpretability
attention weights aggregating the attention-based weight of the
three. This along with the previous features presented provides
forensic investigators with actionable information that leads to
an efficient analysis of system operation.

VI. DISCUSSION

In the previous two case scenarios we demonstrated how
the attention distribution differed between uncompromised

Log Key − Log Templa te

268 <*> <*> c t n e t l i n k v0.<*> r e g i s t e r i n g w i t . . .
269 l i n k c o n f i g a u t o n e g o t i a t i o n i s u n s e t o r . . .
270 WARNING Unknown i n d e x <*> s een r e l o a d i n g . . .
271 <*> Link UP
164 t ime <*> <*>”” l e v e l i n f o msg ”” Loading . . .
168 t ime <*> <*>”” l e v e l i n f o msg ”” Docker d . . .
169 t ime <*> <*>”” l e v e l i n f o msg ”” Daemon h . . .
171 t ime <*> <*>”” l e v e l i n f o msg ”” API l i s t . . .
170 S t a r t e d Docker A p p l i c a t i o n C o n t a i n e r Eng . . .

11 ens3 C o n f i g u r e d
9 S t a r t e d ntp −systemd − n e t i f . s e r v i c e .

420 S t o p p i n g Network Time S e r v i c e . . .
421 n tpd e x i t i n g on s i g n a l <*> T e r m i n a t e d

Fig. 3. Corresponding log templates of each key in evaluated sequence of
NTP DDoS attack.
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Fig. 4. Log key sub-sequences of NTP DDoS attack in sequence S processed by the federated model for predicting the g candidates. The ”Ground Truth Keys”
following sub-sequences {S1, S2, S3} ∈ S are compared against the corresponding predicted list of g candidates for identifying anomalies leading to cyber
threats. The number of log keys for each sub-sequence is determined by the window frame parameter Λ. For every sub-sequence Sj , attention is calculated for
every key in Sj . In the proposed transformer-based model, attention is ultimately passed to a fully connected layer and subsequently to a Softmax layer for
predicting the top g candidates and the probability for each of them. For this case scenario, in sub-sequence S1 the attention highly concentrates in keys 164,
168, and 11 to correctly predict the log key 9 that follows the sub-sequence. In contrast, the following two sub-sequences S2andS3 shows the attention
concentrated in keys 164, 169, and 11 where this last log key showed an attention 3 to 4 times larger than in S1. This difference in attention across generates
predictions of top g candidates that do not match the following ground truth keys, indicating a deviation from the normal system behavior that leads the
detection of this cyber threat.

systems and systems targeted by a NTP DDoS attack. The
same approach was followed to evaluate all log sequences
from uncompromised and compromised systems included in
our CTDD dataset. Fig. 6 (left) shows the aggregated attention

Fig. 5. Top Left: Aggregated attention by input log key of NTP DoS attack.
Top Right: Aggregated attention by input log key of SYN Flood attack. Bottom
Left: Aggregated attention by input log key of BT DoS attack. Bottom Right:
Federated attention of NTP DDoS, SYN Flood, and BT DDoS attacks.

for each log key in the input sequence from all uncompromised
clients computed by our interpretability module. Similar to the
previous results, when comparing with the attention computed
from all sequences from compromised systems, we can observe
the difference in attention distributed across all keys. In addition,
we can observe that most of the attention in uncompromised
systems concentrate in log keys with lower value while attention
in compromised systems, shown in Fig. 6 (right), concentrate
in log keys with higher value.

Fig. 6 (left) presents the saliency map with the attention of
every log key in the input sequence influencing each correctly
predicted log key (ground truth) following the input sequence.
Fig. 6 (right) presents the saliency map with the attention of
every log key in the input sequence influencing each detected
anomaly which are ground truth label not matching any of the
predicted top g candidates. The saliency map show that log
keys in the input sequence with high values highly influence
the detection of anomalies trigger by most log keys following
the input sequence. In this case, we also observe the same
difference in attention distribution between compromised and
uncompromised systems.

To measure the distribution difference for a specific sample,
the interpretability module performs a goodness of fit test of
the corresponding ZSΥ

φ with respect to a given federated ZSΥ
Φ .

We computed ZSΥ
φ for the syslogs of the cyber threats listed

in Table II. We calculated the Chi-square statistic for each
ZSΥ
φ with respect to the federated ZSΥ

Φ of all cyber threats,
shown in Fig. 6 (left). We performed the same comparison
with respect to the federated ZSΥ

Φ of uncompromised systems,
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Fig. 6. On the left: Saliency map of aggregated attention of Clients 1 and
2 computed by the FL interpretability module. On the right: The saliency
maps show a clear difference in the distribution of attention resulting from
independent sample sets of data points representing different case scenarios
(normal non-compromised environment and NTP DDoS cyber threat). The
attention of client systems shows a higher concentration on ki ∈ K, i =
1, . . . , 26 while the attention of the NTP DDoS cyber threat concentrates on
ki ∈ K, i = 424, . . . , 444.

shown in Fig. 6 (right).
The Chi-square statistic ZSΥ

φ of each cyber threat with
respect to the federated ZSΥ

Φ of compromised systems, shown
in Fig. 7a (left), computed to an average of 42.664 and a p−
value = 1. Given this results, we do not reject the hypothesis
that the cyber threats share the same distribution as the federated
ZSΥ

Φ of compromised systems. On the other hand, the Chi-
square statistic of each cyber threat with respect to federated
ZSΥ

Φ of uncompromised systems, shown in Fig. 7a (right),
computed to an average of 66452.6871 and a p− value = 0.
The Chi-square statistics for the latter comparison where far
greater than the range within the chi-square statistic, shown
in Fig. 7b, with 448 degrees of freedom. Given these results,
we reject the hypothesis that the distribution of ZSΥ

φ for any
cyber threat differs from the distribution of federated ZSΥ

Φ of
uncompromised systems.

Such results support the effectiveness of our approach for
using attention for interpretability purposes and show that our
federated learning approach properly captures the aggregated
knowledge from multiple clients for detecting cyber threats
and evaluating distribution similarity.

Some of the observed limitations of our work include the
detection of cyber threats using fusion logs which combines
multiple types of logs(i.e., syslogs, kernel logs, audit logs,
authentication logs). Additionally, our current model is limited
to learn only from known log templates. Integrating previously
unseen logs for improving the performance for cyber threat
detection is yet to be explored. Additionally, we observed that
the performance for some SOTA models greatly improve when
implementing log template semantic-based. These features will
be explored in our future work.

VII. CONCLUSION

We proposed an interpretable federated transformer log
learning model for detecting cyber threats with interpretability
capabilities useful for threat forensics. Existing approaches
consist of centralized anomaly detection models that overlook

(a) Box plot of Chi-Square statistic computed for ZSΥ
φ of each cyberattack in

the CTDD dataset with respect to the federatedZSΥ
Φ of all cyber threats (left)

and ZSΥ
Φ of all uncompromsed systems.

(b) Chi-Square distribution curve with 448 degrees
of freedom.

Fig. 7. Goodness of fit test for the multinomial interpretability attention-
based weights of each attack with respect to the federated interpretability
attention-based weights of compromised and uncompromised systems.

data privacy and data jurisdiction laws. As of now, none of the
existing works explore the interpretability of the model’s pre-
dicted outcomes, obscuring the user’s visibility into the model’s
decision-making factors. Thus, the techniques presented in this
paper are an improvement over SOTA works. The proposed
approach constructs a time-series vector from log sequences
extracted from syslogs capturing system operational and user
activity. Using an unsupervised approach, a transformer-based
model at each client learns the underlying patterns of the time
series. In addition, it integrates a federated learning approach for
aggregating the learned patterns from local models to produce
an updated global FL model. Furthermore, it uses the attention
values to provide visibility to the model’s decision-making
process and highlights differences in attention between normal
sequences and threat sequences.

Our approach demonstrated its log agnostic capability and
applicability on high-dimensional time series. Our model’s peak
F-score (93.84%) in the HDFS dataset was achieved using two
encoder and decoder layers, and 1 attention head. While it does
not outperform SOTA works, it outclasses these by integrating
data privacy and visibility into the model’s decision-making
process. In future work, we will be exploring the applicability
of our approach on different types of multivariate time-series
data including network and audit logs.
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